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Chapter 1

Dynamical Systems

1.1 Overview of Dynamical Systems
Our entire discussion of linear systems will revolve around the concept of dynam-
ical systems. We will begin by defining what a dynamical system is and what
it describes. We will then discuss numerous axioms, properties, and definitions
related to dynamical systems, including some common categories of systems.

1.1.1 Definition of a Dynamical System
A dynamical system is a system in which a function describes a set of input,
output, and state variables as a function of time. We often use T to denote the
set of all possible times. If the functions are defined in continuous time, then
T = (−∞,∞) or T = [0,∞). If the functions are defined in discrete time, then
T = {nTstep, n ∈ Z} or T = {nTstep, n ∈ N}. A dynamical system is represented
by D = (U ,X ,Y, s, r), where

U is the set of input functions u ∶ T → U

U is the set of all possible inputs (typically U = Rni)
X is the set of state trajectories x ∶ T →X

X is the set of all possible states (typically X = Rn)
Y is the set of output functions y ∶ T → Y

Y is the set of all possible outputs (typically Y = Rno)
s is the state transition function s ∶ T × T ×X × U →X

r is the output read-out map r ∶ T ×X ×U → Y

For initial time t0 ∈ T , final time t1 ∈ T , initial state x0 ∶= x(t0) ∈ X, and input
function u ∈ U defined over [t0, t1], the state x1 = x(t1) ∈X is given by

x1 = s(t1, t0,x0, u).
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For some time t ∈ T , a state x(t) ∈ X at that time, and an input u(t) ∈ U at
that time, the output y(t) ∈ Y at that time is given by

y(t) = r(t, x(t), u(t)).

1.1.2 Response Function
The composition of the state transition function and the output read-out map
is called the response function. Given that the system started at an initial
time t0 ∈ T and initial state x0 ∶= x(t0) and assuming we applied the input u
over the time interval [t0, t], the response at time t ∈ T is

y(t) = ρ(t, t0,x0, u)
= r(t, s(t, t0,x0, u), u(t)).

The zero state response, which is also referred as the forced response, is
the response of the system when the initial condition is zero (i.e. x0 = 0X). The
zero state response can be expressed as

y(t) = ρ(t, t0,0X , u).

The zero input response, which is also referred to as the natural response,
is the response of the system under the absence of any input (i.e. u = 0U ). The
zero input response can be expressed as

y(t) = ρ(t, t0,x0,0U).

1.2 Dynamical System Axioms
The state transition map of a valid dynamical system is required to satisfy two
axioms: the state transition axiom and the semi-group axiom.

1.2.1 State Transition Axiom
The state transition axiom says that if t0, t1 ∈ T are an initial and a final
time that satisfy t0 ≤ t1, x0 ∶= x(t0) is an initial state, and u, ũ ∈ U are two
different input functions that satisfy u(t) ≡ ũ(t) for all t ∈ [t0, t1], then

s(t1, t0,x0, u) = s(t1, t0,x0, ũ).

This means that, given an initial state, the final state does not depend on the
input prior to the initial time. The initial state summarizes all of the effects of
the prior inputs. Similarly, the final state does not depend on the input after
the final time, which means that the system is not anticipative/causal.

Linear Systems | S. Pohland
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1.2.2 Semi-Group Axiom
The state transition map must also satisfy the semi-group axiom, which says
that if t0, t1, t2 ∈ T are an initial, an intermediate, and a final time that satisfy
t0 ≤ t1 ≤ t2, x0 ∶= x(t0) is an initial state, and u ∈ U is an input function, then

s(t2, t0,x0, u) = s(t2, t1, s(t1, t0,x0, u), u).
This means that the final state of the system can be equivalently determined by
either the initial state at the initial time under some input, or by an intermediate
state at the intermediate time under the same input function.

1.3 Properties of Dynamical System
The are two important properties of dynamical systems satisfy: time-invariance
and linearity. Dynamical systems are not required to satisfy either property,
but systems that satisfy these properties are often more simple to work with.

1.3.1 Time-Invariance
The shift operator is a function Tτ ∶ U → U , which is defined as (Tτu)(t) =
u(t − τ). A dynamical system D = (U ,X ,Y, s, r) is time-invariant if

1. U is closed under Tτ for all τ ∈ T . (Note that this is always true if U is
composed of piecewise continuous functions.)

2. For all t0, t1, τ ∈ T such that t1 ≥ t0, all x0 ∶= x(t0) ∈X, and all u ∈ U ,
ρ(t1, t0,x0, u) = ρ(t1 + τ, t0 + τ,x0, Tτu).

This says that a dynamical system is time-invariant if the response does not
change if you start τ seconds later. Equivalently, a dynamical system is time-
invariant if the evolution of the system does not depend on the initial time.

1.3.2 Linearity
A dynamical system D = (U ,X ,Y, s, r) is said to be linear if

1. U , X, and Y are all linear spaces over the same field, F .

2. For all t0, t ∈ T such that t ≥ t0, all initial states x0 ∶= x(t0) ∈ X, all
alternative initial states x̃0 ∶= x̃(t0) ∈X, and for all u, ũ ∈ U ,

ρ(t, t0, αx0 + α̃x̃0, αu + α̃ũ) = αρ(t, t0,x0, u) + α̃ρ(t, t0, x̃0, ũ).

If a dynamical system is linear, then the response of the system can be separated
into the zero state response and zero input response in the following way:

ρ(t, t0,x0, u) = ρ(t, t0,0X , u) + ρ(t, t0,x0,0U).
We will generally assume that the systems we work with in these notes are linear
because linear systems exhibit some other very nice properties as well.

Linear Systems | S. Pohland
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1.4 Common Types of Dynamical Systems
From our definitions of time-invariance and linearity, we can define four cate-
gories of dynamical systems: continuous linear time-varying systems, continuous
linear time-invariant systems, discrete time-varying systems, and discrete time-
invariant systems. Notice that all of these systems are linear. Only the second
and fourth categories of systems satisfy the time-invariance property.

1.4.1 Continuous Linear Time-Varying Systems
A continuous linear time-varying (LTV) system can be represented as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) = A(t)x(t) +B(t)u(t)
y(t) = C(t)x(t) +D(t)u(t)
x(t0) = x0

,

where x(t) ∈ Rn is the state at time t, u(t) ∈ Rni is the input at time t, and
y(t) ∈ Rno is the output at time t. A(t) ∈ Rn×n, B(t) ∈ Rn×ni , C(t) ∈ Rno×n,
and D(t) ∈ Rno×ni are matrices that describe the dynamics of the system.

1.4.2 Continuous Linear Time-Invariant Systems
A continuous linear time-invariant (LTI) system can be represented as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) =Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)
x(t0) = x0

,

where x(t) ∈ Rn is the state at time t, u(t) ∈ Rni is the input at time t, and
y(t) ∈ Rno is the output at time t. A ∈ Rn×n, B ∈ Rn×ni , C ∈ Rno×n, and
D ∈ Rno×ni are constant matrices that describe the dynamics of the system.

1.4.3 Discrete Linear Time-Varying Systems
A discrete linear time-varying (LTV) system can be represented as

⎧⎪⎪⎨⎪⎪⎩

xk+1 =Akxk +Bkuk
yk = Ckxk +Dkuk

,

where xk ∈ Rn is the state at time k, uk ∈ Rni is the input at time k, and
yk ∈ Rno is the output at time k. Ak ∈ Rn×n, Bk ∈ Rn×ni , Ck ∈ Rno×n, and
Dk ∈ Rno×ni are matrices that describe the dynamics of the system.

Linear Systems | S. Pohland



CHAPTER 1. DYNAMICAL SYSTEMS

1.4.4 Discrete Linear Time-Invariant Systems
A discrete linear time-invariant (LTI) system can be represented as

⎧⎪⎪⎨⎪⎪⎩

xk+1 =Axk +Buk
yk = Cxk +Duk

,

where xk ∈ Rn is the state at time k, uk ∈ Rni is the input at time k, and
yk ∈ Rno is the output at time k. A ∈ Rn×n, B ∈ Rn×ni , C ∈ Rno×n, and
D ∈ Rno×ni are constant matrices that describe the dynamics of the system.

1.5 Equivalence
The last general concept we will discuss related to dynamical systems is equiv-
alence. We can think about both equivalent states and equivalent systems.

1.5.1 Equivalent States
Let D = (U ,X ,Y, s, r) and D̃ = (U , X̃ ,Y, s̃, r̃) be two dynamical systems with
the same input and output spaces. The initial state x0 ∈ X in system D is
equivalent to the initial state x̃0 ∈ X̃ in system D̃ if for all times t0, t ∈ T that
satisfy t ≥ t0, the response of the system is the same, meaning

ρ(t, t0,x0, u) = ρ(t, t0, x̃0, u).

This says that two initial states are equivalent if they lead to the same response
when the same input is applied over the same time interval.

1.5.2 Equivalent Systems
Let D = (U ,X ,Y, s, r) and D̃ = (Ũ , X̃ , Ỹ, s̃, r̃) be two dynamical systems. The
systems D and D̃ are equivalent if for all initial times t0 ∈ T and for all states
x ∈ X in the dynamical system D, there exists at least one state x̃ ∈ X̃ in the
dynamical system D̃ that is equivalent to x at time t. This means that two
dynamical systems are equivalent if they have the same input-output pairs.

1.5.3 Modal Form
For any continuous LTI system, we can define an equivalent system that is said
to be in modal form. Consider a continuous LTI system described by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) =Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)
x(t0) = x0

,

where x(t) ∈ Rn, u(t) ∈ Rni , y(t) ∈ Rno , A ∈ Rn×n, B ∈ Rn×ni , C ∈ Rno×n, and
D ∈ Rno×ni . Suppose A admits the diagonalization A = UΛU−1. Let’s define

Linear Systems | S. Pohland
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a new trajectory function, z, such that z(t) ∶= U−1x(t) for all times t ∈ T . We
can describe the evolution of this new system as

ż(t) = U−1ẋ(t)
= U−1(Ax(t) +Bu(t))
= U−1Ax(t) +U−1Bu(t)
= U−1AUz(t) +U−1Bu(t).

Similarly, we can define the output of this new system as

y(t) = Cx(t) +Du(t) = CUz(t) +Du(t).

Now we have a new linear time-invariant (LTI) system described by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ż(t) = Ãz(t) + B̃u(t)
y(t) = C̃z(t) + D̃u(t)
z(t0) = z0

,

where Ã = U−1AU = Λ, B̃ = U−1B, C̃ = CU , and D̃ =D. This system is said
to be in modal form because we can easily read off the modes/eigenvalues of
the system in the dynamics matrix Ã = Λ. The original system and the system
in modal form have the same input-output pairs, so they are equivalent.

Linear Systems | S. Pohland



Chapter 2

Differential Equations

2.1 Ordinary Differential Equations
Recall from sections 1.4.1 and 1.4.2 that the evolution of both continuous LTV
and continuous LTI systems can be described by a differential equation. It
is, therefore, useful to discuss some important concepts related to differential
equations. Ordinary differential equations (ODEs) have the general form

ẋ(t) = d

dt
x(t) = f(x(t), t),

where x(t) ∈ Rn is the state, t ∈ R+ is the time, x(t0) = x0 ∈ Rn is the initial
condition, and f ∶ Rn × R+ → Rn is a function describing the way the state
changes with time. The solution to an ordinary differential equation (ODE) is

x(t) = x(t0) + ∫
t

t0
f(x(τ), τ)dτ.

We can prove that an expression, φ(t) is a solution to the differential equation
ẋ(t) = f(x(t), t) with initial condition x(t0) = x0 by showing that it satisfies

1. the differential equation – d
dt
φ(t) = f(φ(t), t) and

2. the initial condition – φ(t0) = x0.

2.2 Existence and Uniqueness
Often, we want to know if there exists a solution to a differential equation with a
given initial condition. If some solution exists, we are also interested in whether
this solution is unique. We can determine whether a solution exists and is unique
using the fundamental theorem of differential equations. Before discussing this
theorem, it is useful to first review some properties of functions: continuity,
continuous differentiability, piecewise continuity, and Lipschitz continuity.

13
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2.2.1 Continuity & Continuous Differentiability
A function f(x, t) ∶ Rn ×R+ → Rn is said to be continuous in x if for all c ∈ Rn
and for all t ∈ R+, (1) the point f(c, t) is defined and (2) f satisfies

lim
x→c−

f(x, t) = lim
x→c+

f(x, t) = f(c, t).

A function f(x, t) ∶ Rn × R+ → Rn is said to be continuously differentiable
in x if its gradient, ∇xf(x, t), exists for all values of x ∈ Rn and is continuous.

2.2.2 Piecewise Continuity
A function f(x, t) ∶ Rn ×R+ → Rn is piecewise continuous in t for all x if

1. f(x, ⋅) ∶ R+ → Rn is continuous except at points of discontinuity and

2. there are only finitely many points of discontinuity in any closed and
bounded interval on the domain of f .

2.2.3 Lipschitz Continuity
A function f(x, t) ∶ Rn × R+ → Rn is Lipschitz continuous in x for all t if
there exists a piecewise continuous function k(t) ∶ R+ → R+ that satisfies

∣∣f(x, t) − f(z, t)∣∣ ≤ k(t)∣∣x − z∣∣.

If the Lipschitz condition is satisfied for all x,z ∈ Rn and all t ∈ R+, then
the function f is globally Lipschitz continuous. If the Lipschitz condition
is satisfied for all x,z ∈ S ⊂ Rn and all t ∈ R+, then the function f is locally
Lipschitz continuous in S. In showing that a function is Lipschitz continuous,
it is often helpful to use the mean value theorem, which says

∣∣f(x, t) − f(z, t)∣∣ ≤ ∣∣Dxf(x, t)∣∣∣∣x − z∣∣.

This theorem is useful because if the induced norm of the Jacobian of f with
respect to x is bounded by a piecewise continous function, k(t), for all x, then
f(x, t) is globally Lipschitz continuous in x. Similarly, if the induced norm is
bounded by a piecewise continuous function for some subset of the values of
x, then f(x, t) is locally Lipschitz continuous. We can show that any induced
norm is bounded, but it generally easiest to use the induced l1 or l∞ norm.

Determining Lipschitz Continuity

Lipschitz continuity is a useful property, but it is not always trivial to determine
if a function is Lipschitz continuous. If we want to know whether a function is
Lipschitz continuous, the following procedures can provide some guidance:

1. Check if the function is linear.
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(a) If the function is linear, it is globally Lipschitz continuous.
(b) If it is nonlinear, it may or may not be Lipschitz continuous.

2. If the function is nonlinear, check if any of the induced norms of the
Jacobian, Dxf(x, t), are bounded.

(a) If one of the norms is bounded for all possible values of x, then the
function is globally Lipschitz continuous.

(b) If one of the norms is bounded for some subset of the values of x,
then the function is locally Lipschitz continuous within that subset.
The function may or may not be globally Lipschitz continuous.

(c) If none of the induced norms are bounded, then the function may or
may not be Lipschitz continuous.

3. If none of the induced norms of the Jacobian can determine whether the
function is (globally) Lipschitz continuous, try manipulating the norms
∣∣f(x, t) − f(z, t)∣∣ and ∣∣x − z∣∣ directly to find a valid function, k(t), that
satisfies the Lipschitz condition either globally or locally.

(a) If we find a piecewise continuous function, k(t), that holds for all
values of x, then the function is globally Lipschitz continuous.

(b) If we find a function, k(t), that holds for some subset of x, then
the function is locally Lipschitz continuous within that subset. The
function may or may not be globally Lipschitz continuous.

(c) If we cannot find a piecewise continuous function, k(t), then the
function may or may not be Lipschitz continuous.

4. If we have not been able to show that a function is globally Lipschitz
continuous, try finding a counterexample to show that the function is
not globally Lipschitz continuous. To find a counterexample, assume the
function is globally Lipschitz continuous. Then try to choose values for x
and z in terms of k(t) that make the Lipschitz inequality false, disproving
the assumption that the function is globally Lipschitz continuous.

(a) If we find a counterexample, the function is not globally Lipschitz
continuous. It may or may not be locally Lipschitz continuous.

(b) If we cannot find a counterexample, then we cannot determine whether
the function is or is not globally Lipschitz continuous.

2.2.4 Fundamental Theorem of Differential Equations
Theorem: Consider the ordinary differential equation ẋ(t) = f(x(t), t) with ini-
tial condition x(t0) = x0. If f is (1) piecewise continuous in t and (2) Lipschitz
continuous in x, then the fundamental theorem of differential equations
says that there exists a unique function of time φ ∶ R+ → Rn, which is continu-
ous and differentiable everywhere, satisfying both the differential equation and
initial condition. We can express these two properties of φ as
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1. φ(t0) = x0

2. φ̇(t) = f(φ(t), t), ∀t ∈ T /D, where D is the set of all discontinuity points

Note that if f(x, t) is locally, but not globally, Lipschitz continuous, then the
solution, φ(t), exists but may only exist in some bounded region.

Proof (Uniqueness): We will not entirely prove the fundamental theorem of
differential equations, but we will prove the uniqueness component. If we find a
solution, φ(t), to the differential equation ẋ(t) = f(x(t), t) with initial condition
x(t0) = x0, then we can show that this solution is unique. We will do so by
setting up a proof by contradiction. Suppose that there are two solutions φ(t)
and ψ(t), which both satisfy the differential equation such that

φ̇(t) = f(φ(t), t), φ(t0) = x0,

ψ̇(t) = f(ψ(t), t), ψ(t0) = x0.

Using the solution to a general ODE defined in section 2.1, we can write

φ(t) = x0 + ∫
t

t0
f(φ(τ), τ)dτ,

ψ(t) = x0 + ∫
t

t0
f(ψ(τ), τ)dτ.

Subtracting the second solution from the first, notice that

φ(t) − ψ(t) = ∫
t

t0
(f(φ(τ), τ) − f(ψ(τ), τ))dτ.

Now if we take the norm of this difference, we can obtain an upper bound:

∣∣φ(t) − ψ(t)∣∣ =
RRRRRRRRRRR

RRRRRRRRRRR
∫

t

t0
(f(φ(τ), τ) − f(ψ(τ), τ))dτ

RRRRRRRRRRR

RRRRRRRRRRR
≤ ∫

t

t0
∣∣f(φ(τ), τ) − f(ψ(τ), τ)∣∣dτ.

If the function f is globally Lipschitz continuous in x, then

∣∣φ(t) − ψ(t)∣∣ ≤ ∫
t

t0
k(τ)∣∣φ(τ) − ψ(τ)∣∣dτ.

The Bellman-Gronwall lemma is useful in proving the fundamental theorem
of differential equations. Let u and k be real-valued, piecewise continuous func-
tions on R+, and assume that u(t) and k(t) are strictly positive for all t ∈ R+.
Assume c ≥ 0 and t0 ∈ R+. The Bellman-Gronwall lemma says

u(t) ≤ c + ∫
t

t0
k(τ)u(τ)dτ Ô⇒ u(t) ≤ c exp(∫

t

t0
k(τ)dτ) .
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Now using the Bellman-Gronwall lemma, we find that

∣∣φ(t) − ψ(t)∣∣ ≤ 0 ⋅ exp(∫
t

t0
k(τ)dτ) = 0

We know that norms cannot be negative, which implies that ∣∣φ(t) − ψ(t)∣∣ = 0.
From properties of norms, this then implies that φ(t)−ψ(t) = 0, indicating that
φ(t) = ψ(t). Now we have shown that φ(t) must be a unique solution.

2.2.5 Reverse Time Differential Equation
If the differential equation ẋ(t) = f(x(t), t) with initial condition x(t0) = x0

is piecewise continuous in t and Lipschitz continuous in x, then there exists
a unique solution for both the forward time and the reverse time differential
equation. Because the differential equation has a unique solution, we know that
x(t) cannot diverge from a single initial condition. This is shown in figure 2.1.

Figure 2.1: If a differential equation is piecewise continuous in
time t and Lipschitz continuous in state x, then it has a unique
solution. This means two solutions, x1(t) and x2(t), cannot
diverge from the same initial condition, x(t0).

Since the reverse time differential equation has a unique solution, x(t) also
cannot converge from two distinct initial conditions. This is shown in figure 2.2.

Figure 2.2: If a differential equation is piecewise continuous in
time t and Lipschitz continuous in state x, then the reverse
time differential equation has a unique solution. This means
two initial conditions, x1(t0) and x2(t0), cannot converge to a
single solution, x(t).
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Chapter 3

State Transition Function

3.1 State Transition Matrix
Previously, we defined several matrices that dictated the evolution of the system
for continuous LTV systems (section 1.4.1) and continuous LTI systems (1.4.2).
One of these matrices is commonly referred to as the state transition matrix.
We will discuss this matrix and its properties for both categories of systems.

3.1.1 Continuous LTV Systems
Consider a continuous linear time-varying (LTV) system described by

⎧⎪⎪⎨⎪⎪⎩

ẋ(t) = A(t)x(t)
x(t0) = x0

,

where x(t) ∈ Rn and A(t) ∈ Rn×n. Assume the solution to this ODE is

x(t) = φ(t, t0)x0,

where φ(t, t0) ∈ Rn×n will be referred to as the state transition matrix. Fur-
thermore, we will claim that the state transition matrix satisfies the following:

1. φ̇(t, t0) = A(t)φ(t, t0) and

2. φ(t, t) = φ(t0, t0) = In.

To show that x(t) = φ(t, t0)x0 is actually the solution, we need to show that it
satisfies both the differential equation and the initial condition:

1. Differential equation

ẋ(t) = d

dt
x(t) = d

dt
φ(t, t0)x0 = φ̇(t, t0)x0

= A(t)φ(t, t0)x0 = A(t)x(t) ✓
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2. Initial condition

x(t0) = φ(t0, t0)x0 = Inx0 = x0 ✓

Now we have verified that x(t) = φ(t, t0)x0 is the solution to the differential
equation describing the given continuous LTV system.

3.1.2 Continuous LTI Systems
Consider a continuous linear time-invariant (LTI) system described by

⎧⎪⎪⎨⎪⎪⎩

ẋ(t) =Ax(t)
x(t0) = x0

,

where x(t) ∈ Rn and A ∈ Rn×n. Let’s assert that the state transition matrix for
this system is φ(t, t0) = eA(t−t0), where eA(t−t0) ∈ Rn×n is the matrix exponential.
Thus the solution to this differential equation is given by

x(t) = φ(t, t0)x0 = eA(t−t0)x0.

To verify that x(t) = eA(t−t0)x0 is actually the solution to this ODE, we need
to show that it satisfies both the differential equation and the initial condition:

1. Differential equation

ẋ(t) = d

dt
x(t) = d

dt
eA(t−t0)x0

=AeA(t−t0)x0 =Ax(t) ✓

2. Initial condition

x(t0) = eA(t0−t0)x0 = eA(0)x0

= e0
n×n

x0 = Inx0 = x0 ✓

Now we have verified that x(t) = eA(t−t0)x0 is the solution to the differential
equation describing the LTI system that was given. Therefore, the state transi-
tion matrix for an LTI system is φ(t, t0) = eA(t−t0).

3.1.3 Properties of State Transition Matrix
For both the linear time-varying (LTV) and linear time-invariant (LTI) system,
the state transition matrix must satisfy the following properties:

1. φ(t, t0) = φ(t, t1)φ(t1, t0), ∀t, t0, t1 ∈ R+

2. (φ(t, t0))
−1 = φ(t0, t)

3. det(φ(t, t0)) = exp(∫
t
t0
trace(A(τ))dτ)

For LTI systems, the state transition matrix has additional properties described
under the matrix exponential section of my linear algebra course notes.
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3.1.4 Calculating State Transition Matrix
To calculate the state transition matrix for a linear time-invariant (LTI) system,
we can use methods used to compute the matrix exponential described in the
matrix exponential section of my linear algebra notes. To calculate the state
transition matrix for a linear time-varying (LTV) system described by

⎧⎪⎪⎨⎪⎪⎩

ẋ(t) = A(t)x(t)
x(t0) = x0

,

we can use the previously stated properties of the state transition matrix:

1. φ̇(t, t0) = A(t)φ(t, t0) and

2. φ(t, t) = φ(t0, t0) = In.

One technique for identifying the state transition matrix is to first use methods
from differential equations to numerically compute the solution, x(i)(t), of the
equation ẋ(i)(t) = A(t)x(i)(t) with initial condition x(i)(t0) = ei for i = 1,⋯, n.
Then we can use these n solutions to form the state transition matrix:

φ(t, t0) = [x(1)(t) ⋯ x(n)(t)] .

In general, it can be difficult to find the state transition matrix. However,
consider an LTV system described by ẋ(t) = A(t)x(t), where A(t) is of the
form

A(t) = [ α(t) β(t)
−β(t) α(t)]

for some functions of time, α(t) and β(t). For this case, the state transition is

φ(t, t0) = [φ11(t, t0) φ12(t, t0)
φ21(t, t0) φ22(t, t0)

] , where

φ11(t, t0) = exp
⎛
⎝∫

t

t0
α(τ)dτ

⎞
⎠

cos
⎛
⎝∫

t

t0
β(τ)dτ

⎞
⎠
,

φ12(t, t0) = exp
⎛
⎝∫

t

t0
α(τ)dτ

⎞
⎠

sin
⎛
⎝∫

t

t0
β(τ)dτ

⎞
⎠
,

φ21(t, t0) = − exp
⎛
⎝∫

t

t0
α(τ)dτ

⎞
⎠

sin
⎛
⎝∫

t

t0
β(τ)dτ

⎞
⎠
,

φ22(t, t0) = exp
⎛
⎝∫

t

t0
α(τ)dτ

⎞
⎠

cos
⎛
⎝∫

t

t0
β(τ)dτ

⎞
⎠
.

To derive this state transition matrix, we can transform the differential equation
ẋ(1)(t) = A(t)x(1)(t) with initial condition x(1)(t0) = e1 and the differential
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ẋ(2)(t) = A(t)x(2)(t) with initial condition x(2)(t0) = e2 to polar coordinates
to solve, then transform them back to Cartesian. For more information on
how to perform these computations, reference chapter 11, "Continuous-Time
Linear State-Space Models" in "Lectures on Dynamic Systems and Control" by
Mohammed Dahleh, Munther A. Dahleh, and George Verghese.

3.2 State Transition Function
We discussed the state transition matrix in the context of a system whose state
evolves in the absence of input. We will now introduce an input to the dynamical
system and discuss the state transition function. Once again, we will consider
continuous LTV systems generally, then consider the special case of LTI systems.

3.2.1 Continuous LTV Systems
Consider a continuous linear time-varying (LTV) system described by

⎧⎪⎪⎨⎪⎪⎩

ẋ(t) = A(t)x(t) +B(t)u(t)
x(t0) = x0

,

where x(t) ∈ Rn, u(t) ∈ Rni , A(t) ∈ Rn×n, and B(t) ∈ Rn×ni . Let’s assert that
the solution to this differential equation is given by the following function:

x(t) = φ(t, t0)x0 + ∫
t

t0
φ(t, τ)B(τ)u(τ)dτ.

We will refer to this solution as the state transition function. To show that
the state transition function is a valid solution to the given ODE, we need to
show that it satisfies both the differential equation and the initial condition. In
order to complete this proof, we will use Leibniz integral rule, which says

∂

∂z
∫

b(z)

a(z)
f(x,z)dx = ∫

b(z)

a(z)

∂

∂z
f(x,z)dx+∂b(z)

∂z
f(b(z),z)−∂a(z)

∂z
f(a(z),z).

We can now show that the state transition function is actually a valid solution:
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1. Differential equation

ẋ(t) = d

dt
x(t) = d

dt

⎛
⎝
φ(t, t0)x0 + ∫

t

t0
φ(t, τ)B(τ)u(τ)dτ

⎞
⎠

= d

dt
φ(t, t0)x0 +

d

dt
∫

t

t0
φ(t, τ)B(τ)u(τ)dτ

= d

dt
φ(t, t0)x0 + ∫

t

t0

d

dt
φ(t, τ)B(τ)u(τ)dτ

+ d

dt
(t)(φ(t, t)B(t)u(t)) − d

dt
(t0)(φ(t, t0)B(t0)u(t0))

= φ̇(t, t0)x0 + ∫
t

t0
φ̇(t, τ)B(τ)u(τ)dτ

+ 1(InB(t)u(t)) − 0(φ(t, t0)B(t0)u(t0))

= A(t)φ(t, t0)x0 + ∫
t

t0
A(t)φ(t, τ)B(τ)u(τ)dτ +B(t)u(t)

= A(t)
⎛
⎝
φ(t, t0)x0 + ∫

t

t0
φ(t, τ)B(τ)u(τ)dτ

⎞
⎠
+B(t)u(t)

= A(t)x(t) +B(t)u(t) ✓

2. Initial condition

x(t0) = φ(t0, t0)x0 + ∫
t0

t0
φ(t0, τ)B(τ)u(τ)dτ

= Inx0 + 0 = Inx0 = x0 ✓

Now we have verified that the given state transition function is a valid solution
to the ODE describing a general continuous LTV system.

3.2.2 Continuous LTI Systems
Consider a continuous linear time-invariant (LTI) system described by

⎧⎪⎪⎨⎪⎪⎩

ẋ(t) =Ax(t) +Bu(t)
x(t0) = x0

,

where x(t) ∈ Rn, u(t) ∈ Rni , A ∈ Rn×n, and B ∈ Rn×ni . Let’s assert that the
solution to this differential equation is given by the state transition function:

x(t) = eA(t−t0)x0 + ∫
t

t0
eA(t−τ)Bu(τ)dτ.

To show that the state transition function is a valid solution, we need to show
that it satisfies both the differential equation and the initial condition:
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1. Differential equation

ẋ(t) = d

dt
x(t) = d

dt

⎛
⎝
eA(t−t0)x0 + ∫

t

t0
eA(t−τ)Bu(τ)dτ

⎞
⎠

= d

dt
eA(t−t0)x0 +

d

dt
∫

t

t0
eA(t−τ)Bu(τ)dτ

= d

dt
eA(t−t0)x0 + ∫

t

t0

d

dt
eA(t−τ)Bu(τ)dτ

+ d

dt
(t)(eA(t−t)Bu(t)) − d

dt
(t0)(eA(t−t0)Bu(t0))

=AeA(t−t0)x0 + ∫
t

t0
AeA(t−τ)Bu(τ)dτ

+ 1(InBu(t)) − 0(eA(t−t0)Bu(t0))

=AeA(t−t0)x0 +A∫
t

t0
eA(t−τ)Bu(τ)dτ +Bu(t)

=A
⎛
⎝
eA(t−t0)x0 + ∫

t

t0
eA(t−τ)Bu(τ)dτ

⎞
⎠
+Bu(t)

=Ax(t) +Bu(t) ✓

2. Initial condition

x(t0) = eA(t0−t0)x0 + ∫
t0

t0
eA(t0−τ)Bu(τ)dτ

= Inx0 + 0 = Inx0 = x0 ✓

Now we have verified that the given state transition function is a valid solution
to the ODE describing a general continuous LTI system.

3.3 Response Function
In discussing the state transition matrix and state transition function, we only
considered the evolution of the state. Now we will introduce a function for
the output and find an expression for the repsonse of the system. We will again
consider continuous LTV systems generally, then the special case of LTI systems.
We will also recall discrete time systems and derive a response for these systems.

3.3.1 Continuous LTV Systems
Consider a continuous linear time-varying (LTV) system described by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) = A(t)x(t) +B(t)u(t)
y(t) = C(t)x(t) +D(t)u(t)
x(t0) = x0

,
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where x(t) ∈ Rn, u(t) ∈ Rni , and y(t) ∈ Rno . Assume that A(t) ∈ Rn×n, B(t) ∈
Rn×ni , C(t) ∈ Rno×n, and D(t) ∈ Rno×ni . Previously, we showed that the state
of a general continuous LTV system could be expressed as

x(t) = φ(t, t0)x0 + ∫
t

t0
φ(t, τ)B(τ)u(τ)dτ.

This allows us to write the response of the system as

y(t) = C(t)x(t) +D(t)u(t)

= C(t)
⎛
⎝
φ(t, t0)x0 + ∫

t

t0
φ(t, τ)B(τ)u(τ)dτ

⎞
⎠
+D(t)u(t)

= C(t)φ(t, t0)x0 + ∫
t

t0
C(t)φ(t, τ)B(τ)u(τ)dτ +D(t)u(t)

We refer to this as the response function for continuous LTV systems.

3.3.2 Continuous LTI Systems
Consider a continuous linear time-invariant (LTI) system described by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) =Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)
x(t0) = x0

,

where x(t) ∈ Rn, u(t) ∈ Rni , and y(t) ∈ Rno . Assume that A ∈ Rn×n, B ∈ Rn×ni ,
C ∈ Rno×n, and D ∈ Rno×ni . Previously, we showed that the state of a general
continuous LTI system could be expressed as

x(t) = eA(t−t0)x0 + ∫
t

t0
eA(t−τ)Bu(τ)dτ.

This allows us to write the response of the system as

y(t) = Cx(t) +Du(t)

= C
⎛
⎝
eA(t−t0)x0 + ∫

t

t0
eA(t−τ)Bu(τ)dτ

⎞
⎠
+Du(t)

= CeA(t−t0)x0 + ∫
t

t0
CeA(t−τ)Bu(τ)dτ +Du(t)

We refer to this as the response function for continuous LTI systems.

3.3.3 Discrete LTV Systems
So far we have focused on continuous time systems, for which we have defined
a state transition function. We can also derive an expression for the response
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of a discrete time system. Consider a discrete LTV system described by

⎧⎪⎪⎨⎪⎪⎩

xk+1 =Akxk +Bkuk
yk = Ckxk +Dkuk

,

where xk ∈ Rn, uk ∈ Rni , yk ∈ Rno , Ak ∈ Rn×n, Bk ∈ Rn×ni , Ck ∈ Rno×n, and
Dk ∈ Rno×ni . From the first equation, we can notice the following:

x1 =A0x0 +B0u0

x2 =A1x1 +B1u1 =A1A0x0 +A1B0u0 +B1u1

x3 =A2x2 +B2u2 =A2A1A0x0 +A2A1B0u0 +A2B1u1 +B2u2

⋮

xk =
k−1

∏
i=0

Aix0 +
k−1

∑
i=0

k−1

∏
j=i+1

AjBiui

Combining this with the second equation, the response of the system is

yk = Ckxk +Dkuk

= Ck
⎛
⎝
k−1

∏
i=0

Aix0 +
k−1

∑
i=0

k−1

∏
j=i+1

AjBiui
⎞
⎠
+Dkuk

= Ck
k−1

∏
i=0

Aix0 +
k−1

∑
i=0

Ck
k−1

∏
j=i+1

AjBiui +Dkuk.

3.3.4 Discrete LTI Systems
Because discrete LTI systems are simply a special case of discrete LTV systems,
we can go through the same process to derive the response function for these
systems. Consider a discrete LTI system described by

⎧⎪⎪⎨⎪⎪⎩

xk+1 =Axk +Buk
yk = Cxk +Duk

where xk ∈ Rn, uk ∈ Rni , yk ∈ Rno , A ∈ Rn×n, B ∈ Rn×ni , C ∈ Rno×n, and
D ∈ Rno×ni . From the first equation, we can notice the following:

x1 =Ax0 +Bu0

x2 =Ax1 +Bu1 =A2x0 +ABu0 +Bu1

x3 =Ax2 +Bu2 =A3x0 +A2Bu0 +ABu1 +Bu2

⋮

xk =Akx0 +
k−1

∑
i=0

Ak−1−iBui
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Combining this with the second equation, the response of the system is

yk = Cxk +Duk

= C (Akx0 +
k−1

∑
i=0

Ak−1−iBui) +Duk

= CAkx0 +
k−1

∑
i=0

CAk−1−iBui +Duk

3.4 Linearization
Our discussion of the state transition function and response function has been
limited to linear systems. Most real-world systems, however, are nonlinear.
In some cases, we can obtain a linear system to approximate the evolution and
response of a nonlinear system. This process of obtaining a linear approximation
is referred to as linearization. Consider a nonlinear system described by

⎧⎪⎪⎨⎪⎪⎩

ẋ(t) = f(x(t), u(t), t)
x(t0) = x0

.

Suppose we have some nominal input function, u0, which results in the nominal
state trajectory, x0. Assume that this system can be described by

⎧⎪⎪⎨⎪⎪⎩

ẋ0(t) = f(x0(t), u0(t), t)
x0(t0) = x0

.

Now let the nominal input function, u0, be perturbed to u0 + δu, resulting in a
perturbed state trajectory, x0 + δx. The initial condition is also perturbed from
x0 to x0 + δx0. Now we have a new system, which can be described by

⎧⎪⎪⎨⎪⎪⎩

d
dt
(x0 + δx)(t) = f(x0(t) + δx(t), u0(t) + δu(t), t)

(x0 + δx)(t0) = x0 + δx0

.

Using the Taylor series expansion, we can express the function in the ODE as

f(x0(t) + δx(t), u0(t) + δu(t), t) = f(x0(t), u0(t), t) + ∂f

∂x(t) ∣x(t)=x
0
(t)

u(t)=u0
(t)

δx(t)

+ ∂f

∂u(t) ∣x(t)=x
0
(t)

u(t)=u0
(t)

δu(t) +O(δx2(t), δu2(t)).

We can now obtain the following equation describing the perturbation:

d

dt
δx(t) = ∂f

∂x(t) ∣x(t)=x
0
(t)

u(t)=u0
(t)

δx(t) + ∂f

∂u(t) ∣x(t)=x
0
(t)

u(t)=u0
(t)

δu(t) +O(δx2(t), δu2(t)).
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Assuming that higher order terms are small and can be ignored,

d

dt
δx(t) ≈ ∂f

∂x(t) ∣x(t)=x
0
(t)

u(t)=u0
(t)

δx(t) + ∂f

∂u(t) ∣x(t)=x
0
(t)

u(t)=u0
(t)

δu(t).

Now we can see that we can approximate the behavior of the nonlinear system
around the nominal point, (x0(t), u0(t)), by the linear equation

˙δx(t) ≈ A(t)δx(t) +B(t)δu(t), where

A(t) =Dx(t)f(x(t), u(t), t)∣(x(t),u(t))=(x0(t),u0(t)),

B(t) =Du(t)f(x(t), u(t), t)∣(x(t),u(t))=(x0(t),u0(t)).

We can then write the solution to this linearized system as

δx(t) ≈ φ(t, t0)δx0 + ∫
t

t0
φ(t, τ)B(τ)δu(τ)dτ.

3.5 Discretization
Most real-world systems are continuous, but simulated systems are generally
discrete since computers must work in discrete time. Therefore, it is often
useful to approximate continuous time systems as discrete time systems. This
process of obtaining a discrete time system from a continuous time system is
referred to as discretization. Consider continuous LTI system described by

⎧⎪⎪⎨⎪⎪⎩

ẋ(t) =Ax(t) +Bu(t)
x(t0) = x0

.

Suppose we sample the state of the system every T seconds starting from t = t0.
We want to find an equation to describe the evolution of this sampled system.
As shown previously, the state of the continuous time system is given by

x(t) = eA(t−t0)x(t0) + ∫
t

t0
eA(t−τ)Bu(τ)dτ.

Let’s assume the system starts at time t0 = kT with initial condition x(kT ).
The state of the system at time t = (k + 1)T is then given by

x((k + 1)T ) = eA((k+1)T−kT)x(kT ) + ∫
(k+1)T

kT
eA

((k+1)T−τ)Bu(τ)dτ

If we assume zero-order hold input, meaning that the input is held constant
between t = kT and t = (k + 1)T , then we can express the state as

x((k + 1)T ) = eA((k+1)T−kT)x(kT ) + ∫
(k+1)T

kT
eA

((k+1)T−τ)Bu(kT )dτ
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To simplify the notation, we will denote x(kT ) by xk and u(kT ) by uk. With
this notation, we can now express the state of the system at t = (k + 1)T as

xk+1 = eA((k+1)T−kT)xk + ∫
(k+1)T

kT
eA

((k+1)T−τ)Bukdτ

= eATxk + (∫
(k+1)T

kT
eA

((k+1)T−τ)Bdτ)uk.

Using the change of variables s ∶= τ − kT , we can express xk+1 as

xk+1 = eATxk + (∫
T

0
eA

(T−s)Bds)uk.

Now we can represent this system as the discrete time system

xk+1 = Ãxk + B̃uk, where

Ã = eAT and B̃ = ∫
T

0
eA(T−s)Bds.

Now we have found a discrete time linear representation of the original contin-
uous time linear system, which has been sampled with a period of T .
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Chapter 4

BIBO Stability

4.1 Definition of BIBO Stability
We will now discuss the stability of dynamical systems. A system is considered
to be bounded-input bounded-output (BIBO) stable if bounded inputs
produce bounded outputs under zero initial condition. Written more formally,
a dynamical system is BIBO stable if there exists a constant k <∞ such that

∣∣y∣∣∞ ≤ k∣∣u∣∣∞, ∀u ∈ Lni
∞
, where

Lni
∞

= {u ∈ U ∶ ∣∣u∣∣∞ <∞}.
Note that U is the set of input functions that map a time t ∈ T to an input
u(t) ∈ Rni , as defined in section 1.1.1. As another note, ∣∣ ⋅ ∣∣∞ is the L∞ norm,
which is defined in the function norms section of my linear algebra notes.

In contrast, a dynamical system is not BIBO stable if there exists a bounded
input that produces an unbounded output under zero initial conditions.

4.2 Impulse Response Matrix
In our discussion of BIBO stability, it is helpful to define the impulse response
matrix for both continuous LTV systems and continuous LTI systems.

4.2.1 Continuous LTV Systems
Consider a continuous linear time-varying (LTV) system described by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) = A(t)x(t) +B(t)u(t)
y(t) = C(t)x(t) +D(t)u(t)
x(t0) = x0

,
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where x(t) ∈ Rn, u(t) ∈ Rni , and y(t) ∈ Rno . Assume that A(t) ∈ Rn×n, B(t) ∈
Rn×ni , C(t) ∈ Rno×n, and D(t) ∈ Rno×ni . In section 3.3.1, we showed that the
response of this system could be expressed as

y(t) = C(t)φ(t, t0)x0 + ∫
t

t0
C(t)φ(t, τ)B(τ)u(τ)dτ +D(t)u(t).

When discussing BIBO stability, we are only interested in the relationship be-
tween the input and output, so we will focus on the zero state response, or the
forced response, which is the response of the system when the initial condition
is zero (i.e. x0 = 0n). For this LTV system, the zero state response is given by

yzs(t) = ∫
t

t0
C(t)φ(t, τ)B(τ)u(τ)dτ +D(t)u(t).

We can also express the zero state response for this system as

yzs(t) = ∫
t

t0
H(t, τ)u(τ)dτ, where

H(t, τ) = C(t)φ(t, τ)B(τ) +D(t)δ(t − τ).
The matrixH(t, τ) is the impulse response matrix for the given LTV system.
Note that the term δ(t − τ) in this matrix is the dirac delta function.

4.2.2 Continuous LTI Systems
Consider a continuous linear time-invariant (LTI) system described by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) =Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)
x(t0) = x0

,

where x(t) ∈ Rn, u(t) ∈ Rni , and y(t) ∈ Rno . Assume that A ∈ Rn×n, B ∈ Rn×ni ,
C ∈ Rno×n, and D ∈ Rno×ni . In section 3.3.2, we showed that the response of
this system could be expressed as

y(t) = CeA(t−t0)x0 + ∫
t

t0
CeA(t−τ)Bu(τ)dτ +Du(t)

Again, when discussing BIBO stability, we are only interested in the relationship
between the input and output, so we will look more closely at the zero state
response. For this LTI system, the zero state response is given by

yzs(t) = ∫
t

t0
CeA(t−τ)Bu(τ)dτ +Du(t).

We can also express the zero state response for this system as

yzs(t) = ∫
t

t0
H(t, τ)u(τ)dτ, where

H(t, τ) = CeA(t−τ)B +Dδ(t − τ).
The matrix H(t, τ) is the impulse response matrix for the given LTI system.
Again, the term δ(t − τ) in the response matrix is the dirac delta function.
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4.3 Transfer Function
The impulse response matrix describes the input-output relationship of a system
in the time domain. For a linear time-invariant (LTI) system, we can also express
this relationship in the frequency domain. For the LTI system in the previous
section, we can express the impulse response matrix as

H(t, τ) = CeA(t−τ)B +Dδ(t − τ).

Because the impulse response matrix is simply a function of t − τ , we can write

H(t − τ) = CeA(t−τ)B +Dδ(t − τ).

Defining the variable t′ ∶= t − τ , we can express the impulse response matrix as

H(t′) = CeAt
′

B +Dδ(t′)

Now to find a relationship between the input and output of this LTI system in
the frequency domain, we need to compute the Laplace transform of the impulse
response matrix. Doing so gives us the following transfer function:

H(s) = C(sIn −A)−1B +D.

Notice that the transfer function is an no ×ni matrix. This matrix allows us to
express the relationship between the input and output of an LTI system as

ŷ(s) =H(s)û(s),

where ŷ(s) represents the output function in the frequency domain and û(s)
represents the input function in the frequency domain. Note that ŷ(s) is the
Laplace transform of the time-varying output function, y(t), and û(s) is the
Laplace transform of the time-varying input function, u(t).

4.4 BIBO Stability Tests
Now that we have defined the impulse response matrix for continuous LTV
systems and the transfer function for continuous LTI systems, we can use these
matrices to determine whether the corresponding system is BIBO stable. In
general, a continuous time linear system is BIBO stable if and only if

sup
t∈R

⎧⎪⎪⎨⎪⎪⎩
∫

t

−∞

∣∣H(t, τ)∣∣∞dτ
⎫⎪⎪⎬⎪⎪⎭
= k <∞,

where H(t, τ) is the impulse response matrix for the given system.
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4.4.1 Continuous LTV Systems
Recall that the impulse response matrix for a continuous LTV system is

H(t, τ) = C(t)φ(t, τ)B(τ) +D(t)δ(t − τ).

Therefore, a continuous LTV system is BIBO stable if and only if

1. B(t), C(t), and D(t) are bounded for all values t ∈ T and

2.

sup
t∈R

⎧⎪⎪⎨⎪⎪⎩
∫

t

−∞

∣∣C(t)φ(t, τ)B(τ))∣∣
∞
dτ

⎫⎪⎪⎬⎪⎪⎭
= k <∞.

4.4.2 Continuous LTI Systems
Recall that the impulse response matrix for a continuous LTI system is

H(t, τ) = CeA(t−τ)B +Dδ(t − τ).

Therefore, a continuous LTI system is BIBO stable if and only if

sup
t∈R

⎧⎪⎪⎨⎪⎪⎩
∫

t

−∞

∣∣CeA(t−τ)B∣∣
∞
dτ

⎫⎪⎪⎬⎪⎪⎭
= k <∞.

Let’s define a new variable s ∶= t − τ . We can then express this condition as

sup
t∈R

⎧⎪⎪⎨⎪⎪⎩
∫

0

∞

∣∣CeAsB∣∣
∞
(−1)ds

⎫⎪⎪⎬⎪⎪⎭
= k <∞.

Using properties of integration and noticing that the integral does not depend
on t, we now obtain the following condition for BIBO stability:

∫
∞

0
∣∣CeAsB∣∣∞ds = k <∞.

As shown previously, we can also express the input-output relationship of a
continuous LTI system in the frequency domain using the transfer function:

H(s) = ŷ(s)
û(s) = C(sIn −A)−1B +D.

We can use the transfer function to write another condition for BIBO stability.
A continuous LTI system is BIBO stable if and only if all of the poles of the
transfer function are in the open left half of the complex plane:

Poles(H(s)) ⊂ C−−.

Example: To help see why this is true, consider the following transfer functions:

H1(s) =
1

s − α, H2(s) =
1

s2 + ω2
, H3(s) =

1

s + α where α > 0.
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The first transfer function, H1(s), has one pole at s = α, which is in the open
right half of the complex plane. The second transfer function, H2(s), has two
poles at s = ±jω, which are both on the imaginary axis. The third transfer
function, H3(s), has one pole at s = −α, which is in the open left half of the
complex plane. Based on our test for BIBO stability, we expect only the third
transfer function to be BIBO stable. To see why this is, recall that we can
express the input-output relationship for these three systems as

ŷ1(s) =H1(s)û1(s), ŷ2(s) =H2(s)û2(s), ŷ3(s) =H3(s)û3(s).
If we want to show that the first two systems are not BIBO stable, we need to
find an example of bounded input that does not produce a bounded output. For
the fist system, consider the bounded input u1(t) = 1, which has the Laplace
transform û1(s) = 1

s
. This input results in the output

ŷ1(s) = ( 1

s − α)(1

s
) = 1/α

s − α − 1/α
s

= 1

α
( 1

s − α − 1

s
) .

Taking the inverse Laplace transform, we get the output in the time domain:

y1(t) =
1

α
(eαt − 1).

The output, y1(t), approaches infinity as t approaches infinity, so the bounded
input u1(t) = 1 produces an unbounded output. Therefore, the first system is
not BIBO stable. For the second system, consider the bounded input u2(t) =
sin(ωt), which has the Laplace transform ω

s2+ω2 . This input results in the output

ŷ2(s) = ( 1

s2 + ω2
)( ω

s2 + ω2
) = ω

(s2 + ω2)2
.

Taking the inverse Laplace transform, we get the output in the time domain:

y2(t) =
1

2ω2
(sin(ωt) − ωt cos(ωt)).

The output, y2(t), approaches infinity as t approaches infinity, so the bounded
input u2(t) = sin(ωt) produces an unbounded output. Therefore, the second
system is also not BIBO stable. To show that the third system is BIBO stable,
we need to show that the output is bounded for all bounded inputs. Taking the
inverse Laplace transform of the equation ŷ3(s) =H3(s)û3(s), we get

y3(t) = e−αt ∗ u3(t) = ∫
t

0
e−ατu3(t − τ)dτ

The l∞ norm of this output is then given by

∣∣y3(t)∣∣∞ =
RRRRRRRRRRR

RRRRRRRRRRR
∫

t

0
e−ατu3(t − τ)dτ

RRRRRRRRRRR

RRRRRRRRRRR∞
≤ ∫

t

0
∣∣e−ατu3(t − τ)∣∣

∞

dτ

= ∫
t

0
∣e−ατ ∣∣∣u3(t − τ)∣∣

∞
dτ = ∫

t

0
e−ατ ∣∣u3(t)∣∣

∞
dτ

=
⎛
⎝∫

t

0
e−ατdτ

⎞
⎠
∣∣u3(t)∣∣

∞
= (1 − e−αt)∣∣u3(t)∣∣

∞
.
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Note that ∣∣u3(t− τ)∣∣
∞
= ∣∣u3(t)∣∣

∞
because the l∞ norm is implicitly defined in

terms of t and not in terms of τ . The expression (1 − e−αt) is less than infinity
for all values of t, so this system is BIBO stable, as we expected.
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State Space Stability

5.1 Equilibrium Points
We will also define another notion of stability, which we call state space stability.
State space stability is defined in the context of the equilibrium points of the
system. An equilibrium point of a dynamical system is a state for which the
system is stationary for all future times. Once the system reaches an equilibrium
point, it will remain at this point under the absence of any input. We will discuss
equilibrium points for the common classes of systems defined in section 1.4

5.1.1 Continuous LTV Systems
Consider a continuous time system described by the differential equation

ẋ(t) = f(t, x(t)),

where t ∈ R and x(t) ∈ Rn. The point x̃ ∈ Rn is an equilibrium if

f(t, x̃) = 0n, ∀t ∈ R.

Notice that if x̃ is an equilibrium and x(t) = x̃, then ẋ(t) = 0n. This means
that if the state of the system reaches an equilibrium point, the state will stop
changing and the system will remain at this point for all future time. Consider
a continuous linear time-varying system described by the equation

ẋ(t) = A(t)x(t),

where t ∈ R and x(t) ∈ Rn. The point x̃ ∈ Rn is an equilibrium if

A(t)x̃ = 0n, ∀t ∈ R.

Therefore, x̃ = 0n is always an equilibrium point for a continuous LTV system,
regardless of the elements of the time-varying dynamics matrix, A(t).
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5.1.2 Continuous LTI Systems
Consider a continuous time system described by the differential equation

ẋ(t) = f(x(t)),

where t ∈ R and x(t) ∈ Rn. The point x̃ ∈ Rn is an equilibrium if

f(x̃) = 0n.

As in the time-varying case, if x̃ is an equilibrium and x(t) = x̃, then ẋ(t) = 0n.
This means that if the state of the system reaches an equilibrium point, the state
will stop changing and the system will remain at this point for all future time.
Consider a continuous linear time-invariant system described by the equation

ẋ(t) =Ax(t).

where t ∈ R and x(t) ∈ Rn. The point x̃ ∈ Rn is an equilibrium if

Ax̃ = 0n.

As in the time-varying case, x̃ = 0n is always an equilibrium point for a contin-
uous LTI system. If A is non-singular, then x̃ = 0n is the unique equilibrium.
If A is singular, then the null space of A defines a continuum of equilibria.

5.1.3 Discrete LTV Systems
Consider a discrete time system described by the iterative equation

xk+1 = f(k,xk),

where k ∈ Z and xk ∈ Rn. The point x̃ ∈ Rn is an equilibrium if

f(k, x̃) = x̃, ∀k ∈ Z.

This says that the equilibrium, x̃, is a fixed point of f for all discrete times.
Notice that if x̃ is an equilibrium and xk = x̃, then xk+1 = x̃. This means that
once the state of the system reaches the point x̃, it will remain at this state for
all future time. Consider a discrete linear time-varying system described by

xk+1 =Akxk,

where k ∈ Z and xk ∈ Rn. The point x̃ ∈ Rn is an equilibrium if

Akx̃ = x̃, ∀k ∈ Z.

Therefore, as in the continuous case, x̃ = 0n is always an equilibrium point for
a discrete LTV system, regardless of the time-varying elements of Ak.
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5.1.4 Discrete LTI Systems
Consider a discrete time system described by the iterative equation

xk+1 = f(xk),

where k ∈ Z and xk ∈ Rn. The point x̃ ∈ Rn is an equilibrium if

f(x̃) = x̃.

This says that the equilibrium, x̃, is a fixed point of f . As in the time-varying
case, if x̃ is an equilibrium and xk = x̃, then xk+1 = x̃. This means that once
the state of the system reaches the point x̃, it will remain at this state for all
future time. Consider a discrete linear time-varying system described by

xk+1 =Axk,

where k ∈ Z and xk ∈ Rn. The point x̃ ∈ Rn is an equilibrium if

Ax̃ = x̃.

As in the time-varying case, x̃ = 0n is always an equilibrium point for a discrete
LTI system. Note that if A = In, then every point in Rn is an equilibrium point.

5.2 Definition of State Space Stability
Consider a system with the equilibrium point x̃ = 0n. While state space sta-
bility is defined for individual equilibrium points, we typically say that a sys-
tem is stable if its zero equilibrium point is stable. We will focus mostly on
continuous linear systems whose state under the absence of input is given by
x(t) = φ(t, t0)x0. For such a system, we have the following notions of stability:

1. (Internal) Stability – The system is (internally) stable if and only if for
all initial times t0 ∈ R and all initial states x0 ∶= x(t0) ∈ Rn, the state x(t)
is bounded, meaning that there exists a constant M > 0 such that

∣∣x(t)∣∣2 = ∣∣φ(t, t0)x0∣∣2 ≤ ∣∣φ(t, t0)∣∣2∣∣x0∣∣2 ≤M, ∀t ≥ t0.

2. Asymptotic Stability – The system is asymptotically stable if and only
if it is stable and if for all initial times t0 ∈ R and all initial states x0 ∶=
x(t0) ∈ Rn, the state x(t) converges to the equilibrium, which means that

lim
t→∞

∣∣x(t)∣∣2 = lim
t→∞

∣∣φ(t, t0)x0∣∣2 = 0.

3. Exponential Stability – The system is exponentially stable if and only
if the state, x(t), is bounded by a decaying exponential, which places a
requirement on the rate of convergence to the equilibrium. This means
that there exists constants M,α > 0 such that

∣∣x(t)∣∣2 = ∣∣φ(t, t0)x0∣∣2 ≤ ∣∣φ(t, t0)∣∣2∣∣x0∣∣2 ≤Me−α(t−t0)∣∣x0∣∣2, ∀t ≥ t0.
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Figure 5.1: This system is (internally) stable. The state is
bounded for all time but does not converge to the equilibrium.

Figure 5.2: This system is asymptotically stable. The state
converges to the equilibrium and is bounded for all time. There
is no requirement on the rate of convergence.

Figure 5.3: This system is exponentially stable. The state is
bounded by a decaying exponential, which places a requirement
on the rate of convergence.
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In general, if a system is exponentially stable, it is asymptotically stable, and if
it is asymptotically stable, it is (internally) stable. For a linear time-invariant
(LTI) system, exponential and asymptotic stability are equivalent. Figures 5.1,
5.2, and 5.3 help demonstrate these different notions of state space stability.

5.3 State Space Stability Tests
There are various ways to check if a system is (internally) stable, asymptotically
stable, or exponentially stable. The approach depends on whether the system
is continuous or discrete and whether it is time-varying or time-invariant.

5.3.1 Continuous LTV Systems
Consider a continuous LTV system with the equilibrium point x̃ = 0n whose
state under the absence of input is described by ẋ(t) = A(t)x(t), where x(t) ∈ Rn
and A(t) ∈ Rn×n. There are a couple cases of such systems we will consider.

Skew Symmetric System

Let’s first consider the case when A(t) is skew-symmetric (i.e. A(t)T = −A(t)).
Regardless of the specific entries of A(t), this system is (internally) stable.

Proof: Consider the function V ∶ Rn → R defined such that V (x(t)) = x(t)Tx(t).
If we compute the derivative of V (x(t)) with respect to t, we find

V̇ (x(t)) = d

dt
x(t)Tx(t)

= ẋ(t)Tx(t) + x(t)T ẋ(t)

= (A(t)x(t))Tx(t) + x(t)T (A(t)x(t))
= x(t)TA(t)Tx(t) + x(t)TA(t)x(t)
= −x(t)TA(t)x(t) + x(t)TA(t)x(t)
= 0

Now we have shown that derivative of V (x(t)) with respect to time is zero for
any arbitrary state x(t). If t0 is the initial time, this implies that

V (x(t)) = V (x(t0)), ∀t ≥ t0.

Based on how we defined V , we can equivalently write this equality as

∣∣x(t)∣∣22 = ∣∣x(t0)∣∣22, ∀t ≥ t0.

Therefore, the continuous LTV system is stable if A(t) is skew symmetric.
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Symmetric System

For continuous time-varying systems, there is generally no connection between
the eigenvalues of A(t) and the state space stability. However, there are some
cases when the eigenvalues can tell us about the stability of the system. In
particular, we will consider the case when A(t) is symmetric for all t ∈ R.
If A(t) is symmetric for all t ∈ R, then all of its eigenvalues are real. Let
λ1(t),⋯, λn(t) denote the n real eigenvalues of A(t). If λi(t) ≤ −µ < 0, for all
i = 1,⋯, n and t ∈ R, then the system is exponentially stable.

Proof: Consider the function V ∶ Rn → R defined such that V (x(t)) = x(t)Tx(t).
If we compute the derivative of V (x(t)) with respect to t, we find

V̇ (x(t)) = d

dt
x(t)Tx(t)

= ẋ(t)Tx(t) + x(t)T ẋ(t)

= (A(t)x(t))Tx(t) + x(t)T (A(t)x(t))
= x(t)TA(t)Tx(t) + x(t)TA(t)x(t)
= x(t)TA(t)x(t) + x(t)TA(t)x(t)
= 2x(t)TA(t)x(t)

Because A(t) is symmetric, we can use the Rayleigh quotient to write

λmin(A(t))x(t)Tx(t) ≤ x(t)TA(t)x(t) ≤ λmax(A(t))x(t)Tx(t).

This then gives us the following constraint on the time derivative of V :

V̇ (x(t)) ≤ 2λmax(A(t))x(t)Tx(t).

We assumed that λi(t) ≤ −µ < 0 for all i = 1,⋯, n and t ∈ R. Therefore,

V̇ (x(t)) ≤ −2µ(x(t)Tx(t)) = −2µV (x(t)).

Now we have a simple differential equation, which gives us the solution

V (x(t)) ≤ V (x(t0))e−2µt.

From our definition of V , we can equivalently write this inequality as

x(t)Tx(t) ≤ x(t0)Tx(t0)e−2µt.

Taking the square root of both sides, this inequality becomes

∣∣x(t)∣∣2 ≤ e−µt∣∣x(t0)∣∣2.

Because ∣∣x(t)∣∣2 is bounded by a decaying exponential, the given system is expo-
nentially stable. Therefore, if A(t) is a symmetric matrix and all its eigenvalues
satisfy λi(t) ≤ −µ < 0 for all t ∈ R, the system is exponentially stable.
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5.3.2 Continuous LTI Systems
Consider a continuous linear time-invariant (LTI) system with the equilibrium
point x̃ = 0n whose state under the absence of input is given by ẋ(t) = Ax(t),
where x(t) ∈ Rn and A ∈ Rn×n. We can characterize the stability of this system
based on the eigenvalues of the matrix A and by using Lyapunov equations.

Eigenvalue Test

Suppose that the dynamics matrix A ∈ Rn×n has the eigenvalues λ1,⋯, λn. The
eigenvalues of A tell us the following about the stability of the system:

1. This system is exponentially (and asymptotically) stable if and only if all
of the eigenvalues of A are in the open left half of the complex plane, i.e.

Re{λi} < 0 for i = 1,⋯, n.

2. This system is (internally) stable if and only if all of the eigenvalues of A
are in the closed left half plane, i.e.

Re{λi} ≤ 0 for i = 1,⋯, n,

and each eigenvalue on the jω-axis (i.e. λi whose real part is equal to
zero) has a corresponding Jordan block of size one.

To see why this is true, notice that for a system described by ẋ(t) =Ax(t), the
solution is x(t) = eAtx0. If A admits the Jordan canonical form A = TJT −1,
then we can express this solution as x(t) = T eJtT −1x0. Because J is a Jordan
matrix and the function e(⋅) is analytic, we can express eJt as

eJt =
⎡⎢⎢⎢⎢⎢⎣

eJ1t

⋱
eJlt

⎤⎥⎥⎥⎥⎥⎦
,where eJit =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

eλit teλit ⋯ 1
(ni−1)!

tn1−1eλit

0 eλit ⋯ 1
(ni−2)!

tn1−2eλit

⋮ ⋮ ⋱ ⋮
0 0 ⋯ eλit

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If the real part of λi is strictly negative, then all of the elements of eJit will
converge to zero as t goes to infinity. If the real part of λi is equal to zero and
ni is one, then the elements of eJit will be bounded but will not converge to
zero. If the real part of λi is strictly positive or if the real part of λi is equal to
zero and ni is greater than one, the elements of eJit will grow without bound.

Therefore, if the real part of all the eigenvalues of A is strictly negative, then
all of the elements of eJt will converge to zero, thus x(t) will also converge
to zero. This is what we consider asymptotic stability, which is equivalent to
exponential stability for LTI systems. If the real part of all the eigenvalues of A
is non-positive and ni is one for all of the eigenvalues with zero real part, then
all of the elements of eJt will be bounded but will not necessarily converge to
zero, thus x(t) will also be bounded but will not necessarily converge to zero.
Therefore, we say the system is (internally) stable.
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Lyapunov Equations

A Lyapunov equation is a matrix equation of the form

ATP +PA = −Q, where A,P ,Q ∈ Rn×n.

If A is a dynamics matrix, we can use Lyapunov equations to characterize the
stability of the corresponding continuous LTI system.

Theorem: The system described by ẋ(t) =Ax(t) is exponentially stable if there
exist positive definite matrices P and Q that satisfy the Lyapunov equation.

We will prove this theorem in two different ways. First, we will prove the
theorem using the original definition of exponential stability. We will then
prove it using the eigenvalue test discussed in the previous subsection.

Proof 1 (Definition of Stability): Given a positive definite matrix Q ∈ Sn
++
,

let P ∈ Sn
++

be the solution to the Lyapunov equation ATP +PA = −Q. Now
consider the function V ∶ Rn → R, which is defined as V (x(t)) = x(t)TPx(t). If
we compute the derivative of V (x(t)) with respect to t, we find

V̇ (x(t)) = d

dt
(x(t)TPx(t))

= ẋ(t)TPx(t) + x(t)TP ẋ(t)

= (Ax(t))TPx(t) + x(t)TP (Ax(t))
= x(t)TATPx(t) + x(t)TPAx(t)
= x(t)T (ATP +PA)x(t)
= −x(t)TQx(t).

Because the matrices P are Q are both symmetric, we can use the Rayleigh
quotient to write the following inequalities:

λmin(P )∣∣x(t)∣∣22 ≤ x(t)TPx(t) ≤ λmax(P )∣∣x(t)∣∣22

λmin(Q)∣∣x(t)∣∣22 ≤ x(t)TQx(t) ≤ λmax(Q)∣∣x(t)∣∣22
Because we defined V (x(t)) = x(t)TPx(t) and found that V̇ (x(t)) = −x(t)TQx(t),
the Rayleigh quotient also allows us to write the following set of inequalities:

λmin(P )∣∣x(t)∣∣22 ≤ V (x(t)) ≤ λmax(P )∣∣x(t)∣∣22

λmin(Q)∣∣x(t)∣∣22 ≤ −V̇ (x(t)) ≤ λmax(Q)∣∣x(t)∣∣22
From these two sets of inequalities, we can pull out the following inequalities:

V (x(t))
λmax(P ) ≤ ∣∣x(t)∣∣22 and ∣∣x(t)∣∣22 ≤

−V̇ (x(t))
λmin(Q) .
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Combining these inequalities, we see the following relationship:

V (x(t))
λmax(P ) ≤

−V̇ (x(t))
λmin(Q) .

Rearranging, we get the following relationship between V̇ (x(t)) and V (x(t)):

V̇ (x(t)) ≤ − λmin(Q)
λmax(P )V

(x(t)).

Now we have a simple differential equation, which gives us the solution

V (x(t)) ≤ V (x0) exp
⎛
⎝
− λmin(Q)
λmax(P ) t

⎞
⎠
.

Because V (x(t)) ≥ λmin(P )∣∣x(t)∣∣22 and V (x0) ≤ λmax(P )∣∣x0∣∣22, we can write

λmin(P )∣∣x(t)∣∣22 ≤ λmax(P )∣∣x0∣∣22 exp
⎛
⎝
− λmin(Q)
λmax(P ) t

⎞
⎠

∣∣x(t)∣∣22 ≤
λmax(P )
λmin(P ) ∣∣x0∣∣22 exp

⎛
⎝
− λmin(Q)
λmax(P ) t

⎞
⎠

∣∣x(t)∣∣2 ≤
⎛
⎝
λmax(P )
λmin(P )

⎞
⎠

1/2

exp
⎛
⎝
−1

2

λmin(Q)
λmax(P ) t

⎞
⎠
∣∣x0∣∣2

Because Q and P are positive definite, all of their eigenvalues must be strictly
positive, which means λmin(Q) > 0 and λmax(P ) ≥ λmin(P ) > 0. Therefore,
∣∣x(t)∣∣2 is bounded by a decaying exponential, which implies that the LTI system
is exponentially stable. Therefore, if there exist positive definite matrices P and
Q that satisfy the Lyapunov equation for the matrix A describing the dynamics
of the LTI system, then the system is exponentially stable.

Proof 2 (Eigenvalue Test): Recall that the system is exponentially stable if
and only if all the eigenvalues of A are in the open left half of the complex
plane. Assume that A has an eigenvector v corresponding to eigenvalue λ,
which implies Av = λv and vTAT = λ̄vT . This allows us to write the following:

−vTQv = vT (ATP +PA)v = vTATPv + vTPAv
= (Av)TPv + vTP (Av) = (λv)TPv + vTP (λv)
= λvTPv + λvTPv = 2λvTPv

Because Q and P are positive definite matrices, vTQv > 0 and vTPv > 0 for all
v ≠ 0n, which implies that the real part of λ is strictly negative. This holds for
all eigenvalue-eigenvector pairs of A, so all the eigenvalues of A have strictly
negative real parts. Therefore, if there exist positive definite matrices P and Q
that satisfy the Lyapunov equation, all of the eigenvalues of A are in the open
left half plane, which implies that the system is exponentially stable.
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5.3.3 Discrete LTI Systems
Consider a discrete linear time-invariant (LTI) system with the equilibrium point
x̃ = 0n whose state under the absence of any input is described by xk+1 =Axk,
where xk ∈ Rn and A ∈ Rn×n has eigenvalues λ1,⋯, λn. The eigenvalues of A
tell us the following about the stability of the discrete LTI system:

1. This system is exponentially (and asymptotically) stable if and only if all
of the eigenvalues of A fall within the unit circle in the complex plane, i.e.

∣λi∣ < 1 for i = 1,⋯, n.

2. This system is (internally) stable if and only if all of the eigenvalues of A
fall on or within the unit circle, i.e.

∣λi∣ ≤ 1 for i = 1,⋯, n,

and each eigenvalue on the unit circle (i.e. λi whose magnitude is equal
to one) has a corresponding Jordan block of size one.

To see why this is true, notice that for a system described by xk+1 = Axk, the
solution is xk = Akx0. If A admits the Jordan canonical form A = TJT −1,
then we can express this solution as xk = TJkT −1x0. Because J is a Jordan
matrix and the function (⋅)k is analytic, we can express Jk as

Jk =
⎡⎢⎢⎢⎢⎢⎣

Jk1
⋱

Jkl

⎤⎥⎥⎥⎥⎥⎦
, where

Jki =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λki kλk−1
i ⋯ 1

(ni−1)! ∏
ni−1
j=1 (k − j + 1)λ(k−ni+1)

i

0 λki ⋯ 1
(ni−2)! ∏

ni−2
j=1 (k − j + 1)λ(k−ni+2)

i

⋮ ⋮ ⋱ ⋮
0 0 ⋯ λki

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If the magnitude of λi is strictly less than one, all the elements of Jki will
converge to zero as k goes to infinity. If the magnitude of λi is equal to one
and ni is one, the elements of Jki will be bounded but will not converge. If the
magnitude of λi is strictly greater than one or if the magnitude of λi is equal
to one and ni is greater than one, the elements of Jki will grow without bound.

Therefore, if the magnitude of all the eigenvalues of A is strictly less than one,
then all of the elements of Jk will converge to zero, thus xk will also converge
to zero. This is what we consider asymptotic stability, which is equivalent to
exponential stability for LTI systems. If the magnitude of all the eigenvalues
of A is less than or equal to one and ni is one for all of the eigenvalues with
a magnitude of one, then all of the elements of Jk will be bounded but will
not necessarily converge to zero, thus xk will also be bounded but will not
necessarily converge to zero. Therefore, we say the system is (internally) stable.
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5.4 State Space vs. BIBO Stability
At the beginning of this chapter, we defined three different notions of state
space stability. We said that a system is (internally) stable if the state remains
bounded for all time in the absence of input. A system is asymptotically stable
if the state converges to its equilibrium in the absence of input. Finally, a
system is exponentially stable if the state converges to its equilibrium at an
exponential rate in the absence of input. Recall that in Chapter 4, we said
a system is considered to be bounded-input bounded-output (BIBO) stable if
bounded inputs produce bounded outputs under zero initial condition. We will
now consider the relationship between state space stability and BIBO stability.

5.4.1 Implications of Stability
For a linear time-varying (LTV) system, if the system is exponentially stable
and the matrices B(⋅), C(⋅), and D(⋅) are all bounded, then the system is BIBO
stable. For a linear time-invariant (LTI) system, if the system is exponentially
stable, then it is BIBO stable. For both LTI and LTV systems, a system that is
BIBO stable is not necessarily exponentially stable, or even (internally) stable.

Recall that for an LTI system, the system is BIBO stable if and only if all of
the poles of the transfer function are in the open left half plane. Similarly, the
system is exponentially stable if and only if all of the eigenvalues of A are in the
open left half plane. All of the poles of the transfer function are eigenvalues of
A, but not all of the eigenvalues of A are poles of the transfer function. For this
reason, exponential stability implies BIBO stability, but BIBO stability does
not imply exponential stability and also cannot not imply (internal) stability.

5.4.2 Uncontrollable Modes
If a mode corresponding to an unstable eigenvalue is uncontrollable from the
input, u(t), then this mode does not appear in the transfer function. The
unstable dynamics are effectively hidden from the input by the matrix B.

Example: Consider the system described by ẋ(t) =Ax(t)+Bu(t), whose out-
put is given by y(t) = Cx(t). Let’s define the dynamics matrices as follows:

A =
⎡⎢⎢⎢⎢⎢⎣

−1 0 0
0 3 0
0 0 −6

⎤⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎣

1/10
0

1/15

⎤⎥⎥⎥⎥⎥⎦
, C = [1 1 1] .

The matrix A has three eigenvalues: λ1 = −1, λ2 = 3, and λ3 = −6. This system
is clearly not (internally) stable because the eigenvalue λ2 = 3 is in the right
half plane. To determine if this system is BIBO stable, we need to consider its
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transfer function. Recall that the transfer function is defined as

G(s) = C(sIn −A)−1B

= [1 1 1]
⎡⎢⎢⎢⎢⎢⎣

1
s+1

0 0
0 1

s−3
0

0 0 1
s+6

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1/10
0

1/15

⎤⎥⎥⎥⎥⎥⎦
= 1

10
( 1

s + 1
) + 1

15
( 1

s + 6
)

= 1

6

s + 4

(s + 1)(s + 6) .

Now we can see that the poles of the transfer function are λ1 = −1 and λ3 = −6,
which are both in the open left half plane. The unstable mode corresponding
to λ2 = 3 is said to be uncontrollable from the input because it is hidden by the
matrix B, and thus does not appear in the transfer function.

5.4.3 Unobservable Modes
Similarly, if a mode corresponding to an unstable eigenvalue is unobservable
from the output, y(t), then this mode does not appear in the transfer function.
The unstable dynamics are effectively hidden from the output by the matrix C.

Example: Consider the system described by ẋ(t) =Ax(t)+Bu(t), whose out-
put is given by y(t) = Cx(t). Let’s define the dynamics matrices as follows:

A =
⎡⎢⎢⎢⎢⎢⎣

−1 0 0
0 3 0
0 0 −6

⎤⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎣

1/10
−1/6
1/15

⎤⎥⎥⎥⎥⎥⎦
, C = [1 0 1] .

Again, A has three eigenvalues: λ1 = −1, λ2 = 3, and λ3 = −6, and the system is
not (internally) stable because the eigenvalue λ2 = 3 is in the right half plane.
To determine if this system is BIBO stable, consider its transfer function:

G(s) = C(sIn −A)−1B

= [1 0 1]
⎡⎢⎢⎢⎢⎢⎣

1
s+1

0 0
0 1

s−3
0

0 0 1
s+6

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1/10
−1/6
1/15

⎤⎥⎥⎥⎥⎥⎦
= 1

10
( 1

s + 1
) + 1

15
( 1

s + 6
)

= 1

6

s + 4

(s + 1)(s + 6)

Now we can see that the poles of the transfer function are λ1 = −1 and λ3 = −6,
which are both in the open left half plane. The unstable mode corresponding
to λ2 = 3 is said to be unobservable from the output because it is hidden by the
matrix C, and thus does not appear in the transfer function.
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Chapter 6

Controllability/Observability:
Continuous LTV Systems

6.1 Controllability of Continuous LTV Systems
Informally, a control system is considered controllable if its input can transform
its initial state to any arbitrary state in the configuration space. We will define
controllability more formally for continuous linear time-varying (LTV) systems.

6.1.1 Controllability Map
A dynamical system D = (U ,X ,Y, s, r) is (completely) controllable on the time
interval [t0, t1] if and only if for all x0,x1 ∈ X, there exists an input function
u ∈ U that steers x0 ∶= x(t0) to x1 = x(t1). Equivalently, D is (completely)
controllable on [t0, t1] if and only if for all x0 ∈X, the state transition function
s(t1, t0,x0, u) is surjective. Recall from Section 3.2.1 that for a continuous LTV
system, the state transition function is given by

s(t1, t0,x0, u) = φ(t1, t0)x0 + ∫
t1

t0
φ(t1, τ)B(τ)u(τ)dτ.

If we define the controllability map as the function LC ∶ U →X such that

LC(u) = ∫
t1

t0
φ(t1, τ)B(τ)u(τ)dτ,

then we can express the state transition function as

s(t1, t0,x0, u) = φ(t1, t0)x0 +LC(u).

Therefore, the system is (completely) controllable if and only if the controllabil-
ity map, LC , is a surjective funtion. Based on our definition of surjectivity, this
implies that the system is (completely) controllable if and only if R(LC) = X.
We will assume that X = Rn, as is common for linear systems.
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6.1.2 Controllability Grammian
The adjoint of the controllability map is the map L∗C ∶X → U that satisfies

⟨x,LC(u)⟩X = ⟨L∗C(x), u⟩U ,

where we let X = Rn and U = L2([t0, t1],Rni). To obtain a closed-form expres-
sion for the adjoint of the controllability map, L∗C , we can look more closely at
the expression on the left-hand side of the definition of the adjoint:

⟨x,LC(u)⟩X = xTLC(u)

= xT
⎛
⎝∫

t1

t0
φ(t1, τ)B(τ)u(τ)dτ

⎞
⎠

= ∫
t1

t0
xTφ(t1, τ)B(τ)u(τ)dτ

= ∫
t1

t0
(B∗(τ)φ∗(t1, τ)x)

∗

u(τ)dτ

= ⟨B∗(⋅)φ∗(t1, ⋅)x, u⟩U
Comparing this expression to the right-hand side of the definition of the adjoint,
we can conclude that the adjoint L∗C is defined such that

L∗C(x) = B∗(⋅)φ∗(t1, ⋅)x.

We define the controllability grammian as the function WC[t0, t1] ∶X →X,
where we assume X = Rn, such that

WC[t0, t1] = LCL∗C = ∫
t1

t0
φ(t1, τ)B(τ)B∗(τ)φ∗(t1, τ)dτ.

From the fundamental theorem of linear algebra, R(LC) = R(LCL∗C). There-
fore, the system is (completely) controllable on [t0, t1] if and only if

R(WC[t0, t1]) = R(LCL∗C) = R(LC) =X = Rn.

Notice that the controllability grammian is always positive semidefinite. There-
fore, its range is equal to Rn if and only if it is positive definite. We can then
say that the system is (completely) controllable on [t0, t1] if and only if the
controllability grammian, WC[t0, t1], is positive definite.

6.1.3 Controllable Subspaces
The controllable subspace is the region in the state space that can be reached
from some initial condition. If the system is controllable, then the controllable
subspace is the entire state space (usually Rn).

Previously, we said that for a continuous LTV system with initial state x0 at
time t0, we can express the state of the system at time t1 as

x(t1) = φ(t1, t0)x0 +LC(u),
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where LC is the controllability map defined in Section 6.1.1. This tells us that
the set of states that are reachable from the initial point x0 is

φ(t1, t0)x0 +R(LC).

We call this set the reachable/controllable subspace. A state x1 is thus reachable
at time t1 from the initial state x0 at time t0 if and only

(x1 − φ(t1, t0)x0) ∈ R(LC).

Note that if the system is controllable, then the range of the controllability map
is the entire state space and every vector x1 is reachable.

6.1.4 Computing the Optimal Control
Suppose we want to find the best input sequence that allows us to move the
state of our system from the state x0 at time t0 to the state x1 at time t1. As
shown in the previous section, if x1 is in the controllable subspace, then there
exists a solution u ∈ U to the linear equation x1 = φ(t1, t0)x0 +LC(u).
Based on our definition of controllability, if the system is controllable on the
time interval [t0, t1], then the controllability map LC is surjective and R(LC) =
X = Rn. This means that if the system is controllable, then x1 is always in the
controllable subspace, so there is always a solution to the linear equation. From
linear matrix equations, the minimum norm solution is given by

u = L∗C(LCL∗C)−1(x1 − φ(t1, t0)x0).

If the system is not controllable on the time onterval [t0, t1], then the map LC
is not surjective and R(LC) ⊂X = Rn. If x1 is still in the controllable subspace,
then the minimum norm solution is now given by

u = L∗C(LCL∗C)†(x1 − φ(t1, t0)x0).

If x1 is not in the controllable subspace, then there is no input u ∈ U that can
steer the system from the initial state x0 to x1. Instead, we can choose a control
that steers the system from x0 to a state x̂1, which is the closest state to x1

within the controllable subspace. Now the minimum norm solution is

û = L∗C(LCL∗C)†(x(t1) − φ(t1, t0)x0).

6.2 Observability of Continuous LTV Systems
Informally, a control system is considered observable if its initial state can be
uniquely determined by observing its inputs and outputs. We will define ob-
servability more formally for continuous linear time-varying (LTV) systems.
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6.2.1 Observability Map
A dynamical system D = (U ,X ,Y, s, r) is (completely) observable on the time
interval [t0, t1] if and only if for all input functions u ∈ U and for all output
functions y ∈ Y, the initial state x0 ∶= x(t0) can be uniquely determined. Equiv-
alently, D is (completely) observable on [t0, t1] if and only if for all outputs
y ∈ Y, the response function ρ(t1, t0,x0, u) is injective. Recall that for a linear
time-varying (LTV) system, the response function is given by

ρ(t1, t0,x0, u) = C(t1)φ(t1, t0)x0 +∫
t1

t0
C(t1)φ(t1, τ)B(τ)u(τ)dτ +D(t1)u(t1).

If we define the observability map as the function LO ∶X → Y such that

LO(x0) = C(⋅)φ(⋅, t0)x0,

then we can express the response function as

ρ(t1, t0,x0, u) = LO(x0) + ∫
t1

t0
C(t1)φ(t1, τ)B(τ)u(τ)dτ +D(t1)u(t1).

Therefore, the system is (completely) observable if and only if the observability
map, LO, is an injective function. Based on our definition of injectivity, this
implies that the system is (completely) observable if and only if N(LO) = {0n}.

6.2.2 Observability Grammian
The adjoint of the observability map LO is the map L∗O ∶ Y →X that satisfies

⟨y,LO(x0)⟩Y = ⟨L∗O(y),x0⟩X ,

where we let X = Rn and Y = L2([t0, t1],Rno). To obtain a closed-form expres-
sion for the adjoint of the observability map, L∗O, we can look more closely at
the expression on the left-hand side of the definition of the adjoint:

⟨y,LO(x0)⟩Y = ∫
t1

t0
y∗(τ)LO(x0)dτ

= ∫
t1

t0
y∗(τ)(C(τ)φ(τ, t0)x0)dτ

= ∫
t1

t0
(φ∗(τ, t0)C∗(τ)y(τ))

∗

x0dτ

=
⎛
⎝∫

t1

t0
φ∗(τ, t0)C∗(τ)y(τ)dτ

⎞
⎠

∗

x0

= ⟨
⎛
⎝∫

t1

t0
φ∗(τ, t0)C∗(τ)y(τ)dτ

⎞
⎠
,x0⟩

X
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Comparing this expression to the right-hand side of the definition of the adjoint,
we can conclude that L∗O is defined such that

L∗O(y) = ∫
t1

t0
φ∗(τ, t0)C∗(τ)y(τ)dτ.

We define the observability grammian as the function WO[t0, t1] ∶ X → X,
where we assume X = Rn, such that

WO[t0, t1] = L∗OLO = ∫
t1

t0
φ∗(τ, t0)C∗(τ)C(τ)φ(τ, t0)dτ.

From the fundamental theorem of linear algebra, N(LO) = N(L∗OLO). There-
fore, the system is (completely) observable on [t0, t1] if and only if

N(WO[t0, t1]) = N(L∗OLO) = N(LO) = {0n}.

By the rank-nullity theorem, this implies that the system is (completely) ob-
servable on [t0, t1] if and only if R(WO[t0, t1]) = X = Rn. The observability
grammian is always positive semidefinite, so its range is equal to Rn if and only
if it is positive definite. Therefore, the system is (completely) observable on
[t0, t1] if and only if the observability grammian, WO[t0, t1], is positive definite.

6.2.3 Observable Subspaces
The observable subspace is the region in the state space for which initial
conditions in this space can be uniquely determined by observing the inputs
and outputs of the system over time. If the system is observable, then the
observable subspace is the entire state space (usually Rn).

Previously, we said that for a continuous LTV system with initial state x0 at
time t0, we can express the output of the system at time t as

y(t) = LO(x0) + f(u, t), where

f(u, t) ∶= ∫
t

t0
C(t)φ(t, τ)B(τ)u(τ)dτ +D(t)u(t).

If (x0−x̄0) ∈ N(L0), then LO(x0) = LO(x̄0), so the initial conditions x0 and x̄0

are not distinguishable for a given input u ∈ U and output y ∈ Y. Furthermore,
if x0 ∈ N(L0), then the initial condition x0 is not distinguishable from the
zero vector 0n and thus cannot be uniquely determined for the given input and
output functions. For this reason, we call N(L0) the unobservable subspace.
The observable subspace is then defined as X ∖N(L0).

6.2.4 Determining the Initial State
Suppose we want to determine the initial state of our system after observing
a series of outputs resulting from known inputs. To do so, recall that in the
previous section, we express the output of our system as

y(t) = LO(x0) + f(u, t).
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Because the observability map is a linear function, a solution to the above
equation exists if and only if y(t) − f(u, t) is an element of the range space of
LO. This solution is unique if and only if the map LO is injective.

Based on our definition of observability, if the system is (completely) observable
on the time interval [t0, t], then the map LO is injective and N(LO) = {0n}. In
the case that the observability map is injective, the initial state x0 can always
be uniquely determined by computing the solution to the linear equation:

x0 = (L∗OLO)−1L∗O(y(t) − f(u, t)).

If the system is not (completely) observable on [t0, t], then the map LO is not
injective and the initial state cannot be uniquely determined. We can define the
best approximate of the initial state as the following optimal solution:

x̂0 = (L∗OLO)†L∗O(y(t) − f(u, t)).

Now suppose that the output of our system is described by

y(t) = LO(x0) + f(u, t) + z(t),

where z(t) is some unknown error or measurement noise. In this case, we
may find that y(t) − f(u, t) is not in the range space of LO. In this case, let
ŷ(t) = LO(x̂0)+ f(u, t). We aim to find the solution x̂0 such that ŷ(t)− f(u, t)
is as close to y(t) − f(u, t) as possible. Assuming the system is (completely)
observable, the least squares solution is given by

x̂0 = (L∗OLO)−1L∗O(y(t) − f(u, t)).

If the system is not (completely) observable, then the map LO is not injective
and the initial condition cannot be uniquely determined. The "best" solution is

x̂0 = (L∗OLO)†L∗O(y(t) − f(u, t)).

6.3 Time Intervals
We have defined the controllability and observability of a system for an arbitrary
time interval [t0, t1]. If we know the system is controllable on this time interval,
we can also consider whether it is controllable on other time intervals. Similarly,
if we know the system is observable on this time interval, we can also consider
whether it is observable on other time intervals.

Proposition: If an LTV system is controllable on the time interval [t0, t1], then
it is controllable on any interval [t′0, t′1], such that t′0 ≤ t0 < t1 ≤ t′1.
Proof: To show that this is true, we can start by expressing the controllability
grammian over the interval [t′0, t′1] as

WC[t′0, t′1] = ∫
t′1

t′0

φ(t′1, τ)B(τ)B∗(τ)φ∗(t′1, τ)dτ.
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We can break this integral into three integrals over three distinct time intervals:

WC[t′0, t′1] = ∫
t0

t′0

φ(t′1, τ)B(τ)B∗(τ)φ∗(t′1, τ)dτ

+ ∫
t1

t0
φ(t′1, τ)B(τ)B∗(τ)φ∗(t′1, τ)dτ

+ ∫
t′1

t1
φ(t′1, τ)B(τ)B∗(τ)φ∗(t′1, τ)dτ.

Recall from Section 3.1.3 that the state transition matrix satisfies the following:
φ(t2, t0) = φ(t2, t1)φ(t1, t0) for all t0, t1, t2 ∈ R+ such that t0 ≤ t1 ≤ t2. This
property allows us to express the controllability grammian as

WC[t′0, t′1] = ∫
t0

t′0

φ(t′1, t0)φ(t0, τ)B(τ)B∗(τ)φ∗(t0, τ)φ∗(t′1, t0)dτ

+ ∫
t1

t0
φ(t′1, t1)φ(t1, τ)B(τ)B∗(τ)φ∗(t1, τ)φ∗(t′1, t1)dτ

+ ∫
t′1

t1
φ(t′1, τ)B(τ)B∗(τ)φ∗(t′1, τ)dτ.

Pulling out the state transition matrices that do not depend on the variable of
integration (τ) from the integrals, we express the controllability grammian as

WC[t′0, t′1] = φ(t′1, t0)
⎛
⎝∫

t0

t′0

φ(t0, τ)B(τ)B∗(τ)φ∗(t0, τ)dτ
⎞
⎠
φ∗(t′1, t0)

+ φ(t′1, t1)
⎛
⎝∫

t1

t0
φ(t1, τ)B(τ)B∗(τ)φ∗(t1, τ)dτ

⎞
⎠
φ∗(t′1, t1)

+ ∫
t′1

t1
φ(t′1, τ)B(τ)B∗(τ)φ∗(t′1, τ)dτ.

From the definition of the controllability grammian, we can express this as

WC[t′0, t′1] = φ(t′1, t0)WC[t′0, t0]φ∗(t′1, t0)+φ(t′1, t1)WC[t0, t1]φ∗(t′1, t1)+WC[t1, t′1].

We know that, in general, the controllability grammian is positive semidefinite,
so WC[t′0, t0], WC[t0, t1], and WC[t1, t′1] are all PSD. Furthermore, because the
system is controllable on [t0, t1], we know that WC[t0, t1] is positive definite.

Another important property of the state transition matrix from Section 3.1.3
is that it is always invertible. This means that the first term of our expression
for WC[t′0, t′1] is a congruence transformation of a PSD matrix, which is a PSD
matrix. Similarly, the second term of our expression for WC[t′0, t′1] is a congru-
ence transformation of a PD matrix, which is a PD matrix. The third term is
simply a PSD matrix. The sum of a PD matrix and two PSD matrices is a PD
matrix. This then implies that the controllability grammian, WC[t′0, t′1], is PD.
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As we said previously, this implies that the system is (completely) controllable
over the time interval [t′0, t′1]. Therefore, we have shown that if an LTV system
is (completely) controllable on the time interval [t0, t1], then it is completely
controllable on any interval [t′0, t′1] such that t′0 ≤ t0 < t1 ≤ t′1.
Note that the same system that is controllable on [t0, t1] is not necessarily
controllable on any time interval [t′0, t′1] if [t0, t1] is not a subset of [t′0, t′1].
Proposition: If an LTV system is observable on the time interval [t0, t1], then
it is observable on any interval [t′0, t′1], such that t′0 ≤ t0 < t1 ≤ t′1. The proof of
this fact is very similar to the one given for the controllability case.
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Chapter 7

Controllability/Observability:
Continuous LTI Systems

7.1 Controllability of LTI Systems
Consider a continuous linear time-invariant (LTI) system described by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) =Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)
x(t0) = x0

,

where x(t) ∈ Rn, u(t) ∈ Rni , and y(t) ∈ Rno . Assume that A ∈ Rn×n, B ∈ Rn×ni ,
C ∈ Rno×n, and D ∈ Rno×ni . We will discuss methods for determining whether
this system is (completely) controllable on an arbitrary time interval.

7.1.1 Controllability Grammian
Previously we said that a continuous linear system is controllable if and only if
the controllability grammian is positive definite (or full rank). Recall that our
definition of the controllability grammian for a continuous linear system is

WC[t0, t1] = LCL∗C = ∫
t1

t0
φ(t1, τ)B(τ)B∗(τ)φ∗(t1, τ)dτ.

For LTI systems, B(τ) is simply a matrix that is independent of time, and the
state transition function is a matrix defined such that

φ(t, t0) = eA(t−t0).

We further assume that our system is in real space, so the controllability gram-
mian for continuous LTI systems can then be expressed as

WC[t0, t1] = ∫
t1

t0
eA(t1−τ)BBT eA

T
(t1−τ)dτ.
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While we can determine the controllability of our system using this matrix in
same way we would for a time-varying system, we have two tests for determining
the controllability of continuous LTI systems that do not require us to compute
the controllability map or controllability grammian. I refer to these two tests
as the controllability matrix rank test and the PBH test for controllability.

7.1.2 Controllability Matrix Rank Test
Let’s start by defining the controllability matrix Q ∈ Rn×nni such that

Q = [B AB ⋯ An−1B] .

Theorem: The controllability matrix rank test says that the given LTI system
is (completely) controllable on the interval [t0, t1] if and only if rank(Q) = n.
Proof (If): We will first show that if the controllability matrix has a rank of
n, then the system is completely controllable. Let’s suppose that the rank of
the controllability matrix is equal to n but that the system is not controllable.
If the system is not completely controllable on [t0, t1], WC[t0, t1] is not positive
definite, which implies that there exists a non-zero vector v ∈ Rn such that

vTWC[t0, t1]v = vT (∫
t1

t0
eA(t1−τ)BBT eA

T
(t1−τ)dτ)v = 0.

We can equivalently write this equality as

∫
t1

t0
∣∣vT eA(t1−τ)B∣∣22dτ = 0.

Because the vector norm is always non-negative and only equal to zero for the
zero vector, this equality implies that vT eA(t1−τ)B = 0ni for times τ ∈ [t0, t1].
Evaluating the left-hand side of this expression at τ = t1, we see

vT eA(t1−t1)B = vTB = 0ni .

If we differentiate the left-hand side of the previous expression with respect to
τ , negate it, and evaluate it at τ = t1, then we find that

vTAeA(t1−t1)B = vTAB = 0ni .

Continuing to differentiate and evaluate the expression at τ = t1, we find that

vTB = vTAB = ⋯ = vTAn−1B = 0ni .

We can rewrite all of these equalities as a single matrix-vector equation:

vT [B AB ⋯ An−1B] = 0nni .

Using our definition of the controllability matrix, we can write this as

vTQ = 0nni .
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This means that the non-zero vector vT is in the left null space of Q, which
implies that the non-zero vector v is in the null space of QT . However, if
the rank of Q is n, then its range space is Rn. By the fundamental theorem
of linear algebra, the range space of Q and null space of QT are orthogonal
spaces, so the null space of QT must be {0n}. Our assumption that the system
is not controllable then contradicts the fact that rank(Q) = n. Therefore, if
rank(Q) = n, then the given LTI system is controllable on the interval [t0, t1].
Proof (Only If): Now we will show the reverse direction: if the system is
controllable on the interval [t0, t1], then the rank of the controllability matrix
is n. Suppose that the system is controllable on [t0, t1] but rank(Q) < n.
If the rank of Q is less than n, then by the fundamental theorem of linear
algebra, the nullity of QT is greater than 0. This implies there is a non-zero
vector v ∈ Rn in the null space of QT , which means there is a non-zero vector
vT ∈ Rn in the left null space of Q. We can express this conclusion as

vTQ = 0nni

Plugging in our definition for the controllability matrix, we have

vT [B AB ⋯ An−1B] = 0nni .

From this equation, we obtain the following set of n equalities:

vTB = vTAB = ⋯ = vTAn−1B = 0ni .

The matrix exponential is an analytic function (see my linear algebra notes for
more information) that can be expressed as a polynomial of the form

eAt = a1A
n−1 +⋯an−1A + anIn, a1,⋯, an ∈ R.

From this expression, we can see that vT eAtB must be equal to zero. For this
particular non-zero vector v, we can then see that

vTWC[t0, t1]v = ∫
t1

t0
∣∣vT eA(t1−τ)B∣∣22dτ = 0.

Because there exists some non-zero vector v such that vTWC[t0, t1]v is not
strictly positive, WC[t0, t1] cannot be positive definite, which implies that the
system is not actually controllable. Therefore, if the system is completely con-
trollable, then the rank of the controllability matrix must be equal to n.

7.1.3 PBH Test for Controllability
Another useful test is the PBH (Popov–Belevitch–Hautus) controllability test.

Theorem: The PBH test for controllability says that an LTI system is (com-
pletely) controllable on the time interval [t0, t1] if and only if

rank [sIn −A B] = n ∀s ∈ C.
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This matrix can only lose rank for values of s on the spectrum of A, so we only
need to check values of s that are eigenvalues of A. Therefore, an LTI system
is (completely) controllable on any time interval if and only if

rank [sIn −A B] = n ∀s ∈ λ(A).

Proof: To show the validity of this controllability test, recall that we just showed
that the LTI system is (completely) controllable on the interval [t0, t1] if and
only if rank(Q) = n. Therefore, to show that the LTI system is (completely)
controllable on the interval [t0, t1] if and only if the PBH test holds, we can
show that the PBH test holds if and only if rank(Q) = n.

Proof (If): Let’s first show that the PBH test holds if the controllability matrix
has rank n by assuming that rank(Q) = n but the PBH test does not hold. If
the PBH test does not hold, then there exists an eigenvalue λi ∈ λ(A) for which
the rank of the PBH matrix is less than n. By the fundamental theorem of
linear algebra, this means that for s = λi, there is a non-zero vector v ∈ Rn in
the null space of the adjoint of PBH matrix and a non-zero vector vT ∈ Rn in
the left null space of the the PBH matrix. We can express this as

vT [λiIn −A B] = 0n+ni .

We can write this single equation as the following two equalities:

vT (λiIn −A) = 0n and vTB = 0ni .

From the first constraint, we can see that

vTA = λivT .

Right multiplying both sides of the equation above by B, we can see that

vTAB = λivTB = 0ni .

Similarly, right multiplying both sides of the equation by AB, we can see that

vTA2B = λivTAB = 0ni .

If we continue with this process, we will find that

vTB = vTAB = ⋯ = vTAn−1B = 0ni .

We can combine all of these equalities into the single matrix-vector equation:

vT [B AB ⋯ An−1B] = 0nni .

Now plugging in our definition for the controllability matrix we have

vTQ = 0nni .
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This implies that there is a non-zero vector vT in the left null space of Q, which
means rank(Q) < n. We have found a contradiction to our assumption that
rank(Q) = n. Therefore, if rank(Q) = n, then the PBH test holds.

Proof (Only If): Now we want to show that if the PBH test holds, then the
rank of the controllability matrix must be equal to n. To show this, let’s assume
the PBH test holds but the rank of the controllability matrix is less than n.

If rank(Q) < n, then R(Q) = span(B,AB,⋯,An−1B) is a strict subset of
Rn. This then implies that there is a non-empty subspace V ⊂ Rn such that
R(Q)⊕ V = Rn. If y ∈ R(Q), then it can be expressed as a linear combination
of the columns of B,AB,⋯,An−1B. This implies that Ay can be expressed
as a linear combination of the columns of AB,A2B,⋯,AnB. By the Cayley
Hamilton theorem (discussed in my linear algebra notes), this is equivalent to
saying that Ay can be expressed as a linear combination of the columns of
B,AB,⋯,An−1B, which means Ay ∈ R(Q). Because y ∈ R(Q) implies that
Ay ∈ R(Q), R(Q) is an A-invariant subspace. By the second representation
theorem (see linear algebra notes), there exists a representation of A of the form

Ã = [Ã11 Ã12

0 Ã22
] .

If y ∈ R(Q), then it can be expressed as a linear combination of the columns
of B,AB,⋯,An−1B. This implies y ∈ R(B), which means R(B) ⊂ R(Q).
Because R(B) ⊂ R(Q), there also exists a representation of B of the form

B̃ = [B̃1

0
] .

Because we can represent A and B in this way, there exists an invertible matrix
T ∈ Rn×n such that Ã = TAT −1 and B̃ = TB. This allows us to write

[sIn − Ã B̃] = [sIn − TAT −1 TB] = T [sIn −A B] [T
−1 0
0 Ini

] .

Now we can see that the leftmost matrix the one used in the PBH controllability
test are similar matrices, which implies that they have the same rank. Now let’s
look more closely at this matrix to determine its rank:

[sIn − Ã B̃] = [sI − Ã11 −Ã12 B̃1

0 sI − Ã22 0
]

This matrix clearly loses rank for s ∈ λ(Ã22), which implies that its rank is less
than n. This means that under our assumption that rank(Q) < n, the PBH test
does not hold. Therefore, if the PBH test holds, then rank(Q) = n.
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7.1.4 Stabilizable Systems
Consider the LTI system given previously. This system is said to be stabilizable
if all of its uncontrollable modes (refer to Section 5.4.2) are stable. This is
equivalent to saying that the system is stabilizable if all of its unstable modes
are controllable. To check if the given LTI system is stabilizable, we have a
modified PBH test, which says that the system is stabilizable if and only if

rank [sIn −A B] = n ∀s ∈ λ(A) ∩C+.

7.1.5 Controllable Subspaces
Recall that the controllable subspace is the region in the state space that can
be reached from some initial condition. If the system is controllable, then the
controllable subspace is the entire state space (usually Rn). In Section 6.1.3, we
showed that the controllable subspace for a continuous LTV system is

φ(t1, t0)x0 +R(LC).

Furthermore, a state x1 is reachable at time t1 from initial state x0 if and only

(x1 − φ(t1, t0)x0) ∈ R(LC).

For a continuous LTI system with initial state x0 at time t0, the state transition
function is given by φ(t1, t0) = eA(t1−t0), so the controllable subspace is

eA(t1−t0)x0 +R(LC).

Furthermore, a state x1 is reachable at time t1 if and only

(x1 − eA(t1−t0)x0) ∈ R(LC).

The range of the controllability map is the same as the range of the controlla-
bility matrix, Q, given in Section 7.1.2. Therefore, for LTI systems the reach-
able/controllable subspace can equivalently be expressed as

eA(t1−t0)x0 +R(Q).

Furthermore, there exists an input u ∈ U that steers the system from the initial
state x0 at time t0 to the state x1 at time t1 if and only if

(x1 − eA(t1−t0)x0) ∈ R(Q).

Note that if the system is controllable, then the range of the controllability
matrix is the entire state space and every vector x1 is reachable.
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7.1.6 Computing the Optimal Control
Suppose we want to find the best input sequence that allows us to move the
state of our system from the state x0 at time t0 to the state x1 at time t1.
As shown in the previous section, if x1 is in the controllable subspace, there
exists a solution u ∈ U to the linear equation x1 = eA(t1−t0)+LC(u). To find the
optimal solution, we can follow the same approach discussed in Section 6.1.4.

7.2 Observability of LTI Systems
Consider a continuous linear time-invariant (LTI) system described by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) =Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)
x(t0) = x0

,

where x(t) ∈ Rn, u(t) ∈ Rni , and y(t) ∈ Rno . Assume that A ∈ Rn×n, B ∈ Rn×ni ,
C ∈ Rno×n, and D ∈ Rno×ni . We will discuss methods for determining whether
this system is (completely) observable on an arbitrary time interval.

7.2.1 Observability Grammian
Previously we said that a continuous linear system is observable if and only if
the observability grammian is positive definite (or full rank). Recall that our
definition of the observability grammian for a continuous linear system is

WO[t0, t1] = L∗OLO = ∫
t1

t0
φ∗(τ, t0)C∗(τ)C(τ)φ(τ, t0)dτ.

For LTI systems, C(τ) is simply a matrix that is independent of time, and the
state transition function is a matrix defined such that

φ(t, t0) = eA(t−t0).

We further assume that our system is in real space, so the observability gram-
mian for continuous LTI systems can then be expressed as

WO[t0, t1] = ∫
t1

t0
eA

T
(t1−τ)CTCeA(t1−τ)dτ.

While we can determine the observability of our system using this matrix in same
way we would for a time-varying system, we have two tests for determining the
observability of continuous LTI systems that do not require us to compute the
observability map or observability grammian. I refer to these two tests as the
observability matrix rank test and the PBH test for observability.
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7.2.2 Observability Matrix Rank Test
Let’s start by defining the observability matrix O ∈ Rnno×n such that

O =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C
CA
⋮

CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Theorem: The observability matrix rank test says that the given LTI system
is (completely) observable on the interval [t0, t1] if and only if rank(O) = n.
Proof: The proof that this statement holds is very similar to the one given
for the controllability matrix rank test (Section 7.1.2). We can follow the same
steps in this proof using the matrices (AT ,CT ) instead of (A,B).

7.2.3 PBH Test for Observability
Theorem: The PBH test for observability says that an LTI system is (com-
pletely) observable on the time interval [t0, t1] if and only if

rank [sIn −A
C

] = n ∀s ∈ C.

This matrix can only lose rank for values of s on the spectrum of A, so we only
need to check values of s that are eigenvalues of A. Therefore, an LTI system
is (completely) observable on any time interval if and only if

rank [sIn −A
C

] = n ∀s ∈ λ(A).

Proof: To prove the validity of the PBH test for observability, we can follow
the same steps in the proof given for the PBH test for controllability (Section
7.1.3) using the matrices (AT ,CT ) instead of (A,B).

7.2.4 Detectable Systems
Consider the LTI system given previously. This system is said to be detectable
if all of its unobservable modes (refer to Section 5.4.3) are stable. This is
equivalent to saying that the system is detectable if all of its unstable modes are
observable. To check if the given LTI system is detectable, we have a modified
PBH test, which says that the system is detectable if and only if

rank [sIn −A
C

] = n ∀s ∈ λ(A) ∩C+

Linear Systems | S. Pohland



CHAPTER 7. CONTROLLABILITY/OBSERVABILITY: CONTINUOUS
LTI SYSTEMS

7.2.5 Observable Subspaces
Recall that the observable subspace is the region in the state space for which
initial conditions in this space can be uniquely determined by observing the
inputs and outputs of the system over time. If the system is observable, then the
observable subspace is the entire state space (usually Rn). In Section 6.2.3, we
showed that the observable subspace for a continuous LTV system is X∖N(L0).
For an LTI system, N(LO) = N(O), where O is the observability matrix defined
in Section 7.2.2. Therefore, for LTI systems, we call the null space N(O) the
unobservable subspace and X ∖N(O) the observable subspace.

7.2.6 Determining the Initial Condition
Suppose we want to determine the initial state of our system after observing a
series of outputs resulting from known inputs. To do so, we can follow the same
approach discussed for LTV systems in Section 6.2.4.

7.3 Canonical Forms
Consider a continuous linear time-invariant (LTI) system described by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) =Ax(t) + bu(t)
y(t) = cTx(t) + du(t)
x(t0) = x0

,

where x(t) ∈ Rn, u(t) ∈ R, and y(t) ∈ R. Assume A ∈ Rn×n, b ∈ Rn, c ∈ Rn, and
d ∈ R. Consider the state transformation x̃(t) = Tx(t), where T is an invertible
matrix. We can express an equivalent system (recall Section 1.5.2) as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

˙̃x(t) = Ãx̃(t) + b̃u(t)
y(t) = c̃T x̃(t) + d̃u(t)
x̃(t0) = Tx0

,

where Ã = TAT −1, b̃ = Tb, c̃T = cTT −1, and d̃ = d. We can select the trans-
formation matrix, T , to place the system into either controllable or observable
canonical form (assuming the system is controllable and observable).

Recall from Section 4.3 that the transfer function of this system is defined as

H(s) = c̃T (sIn − Ã)−1b̃ + d̃ = cT (sIn −A)−1b + d.

Suppose that the transfer function has the form

H(s) = b1s
n−1 +⋯ + bn−1s + bn

sn + a1sn−1 +⋯ + an−1s + an
.

for some real coefficients a1, a2,⋯, an and b1, b2,⋯, bn.
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7.3.1 Controllable Canonical Form
Suppose there exists an invertible transformation matrix T ∈ Rn×n such that

Ã = TAT −1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1
−an −an−1 −an−2 ⋯ −a1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b̃ = Tb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
⋮
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

c̃T = cTT −1 = [bn bn−1 bn−2 ⋯b1] , d̃ = d.
We say that the system defined by these matrices is in controllable canonical
form. To find the transformation matrix, let T be defined such that

T −1 ∶= [t1 t2 ⋯ tn] .

Now notice that we should choose the columns of T −1 in the following way:

ti =
⎧⎪⎪⎨⎪⎪⎩

b for i = n
Ati+1 + an−ib for i = n − 1,⋯,1

.

Theorem: A continuous LTI single-input single-output (SISO) system can be
expressed in controllable canonical form if and only if it is controllable.

Proof:We already showed how to find the inverse of the transformation matrix.
Now we need to show that this matrix is invertible if and only if the system is
controllable. To do so, notice that we can express the columns of T −1 as

tn = b

tn−1 =Ab + a1b

tn−2 =A2b + a1Ab + a2b

⋮
t1 =An−1b + a1A

n−2 +⋯ + an−2Ab + an−1b

Now notice we can express the inverse of the desired transformation matrix as

T −1 = [b AB ⋯ An−1b]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an−1 an−2 ⋯ a1 1
an−2 ⋮ ⋰ 1 0
⋮ a1 ⋰ 0 ⋮
a1 1 ⋰ ⋮ ⋮
1 0 ⋯ 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix T −1 is invertible if and only if its determinant is not equal to zero,
which is true if and only if the determinant of the two matrix factors are non-
zero (i.e., both matrices have full rank). The first matrix is the controllability
matrix defined in Section 7.1.2, which has full rank if any only if the system is
controllable. The second matrix has n linearly independent rows/columns re-
gardless of the coefficients a1, a2,⋯, an, so it necessarily has full rank. Therefore,
T −1 is invertible if and only if the system is controllable.
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7.3.2 Observable Canonical Form
Suppose there exists an invertible transformation matrix T ∈ Rn×n such that

Ã = TAT −1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ⋯ 0 −an
1 0 ⋯ 0 −an−1

0 1 ⋯ 0 −an−2

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 −a1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b̃ = Tb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bn
bn−1

bn−2

⋮
b1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

c̃T = cTT −1 = [0 0 ⋯ 0 1] , d̃ = d.
We say that the system defined by these matrices is in observable canonical
form. To find the transformation matrix, let T be defined such that

T ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

tT1
tT2
⋮
tTn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Now notice that we should choose the rows of T in the following way:

tTi =
⎧⎪⎪⎨⎪⎪⎩

cT for i = n
tTi+1A + an−icT for i = n − 1,⋯,1

.

Theorem: A continuous LTI single-input single-output (SISO) system can be
expressed in observable canonical form if and only if it is observable.

The proof of this theorem is very similar to the one shown in the previous section
for the controllable canonical form, so I will not include it here.

7.4 Kalman Decomposition
A Kalman decomposition provides a mathematical way to convert a repre-
sentation of any continuous LTI system to a form that indicates the controllable
and observable components of the system. Once the system is expressed in this
form, we can easily infer the system’s reachable and observable subspaces.

Recall from Section 7.1.5 that for a continuous LTI system with initial state
x0 at time t0, the controllable subspace is R(Q) + eA(t1−t0)x0, where Q is the
controllability matrix defined in Section 7.1.2. If we assume that the initial state
is the zero vector, then the controllable subspace is simply R(Q). Let V1 be the
uncontrollable subspace defined such that R(Q)⊕ V1 = Rn.
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In Section 7.2.5, we said that the unobservable subspace is defined by N(O),
where O is the observability matrix defined in Section 7.2.2. Let V2 be the
observable subspace defined such that N(O)⊕ V2 = Rn.

With these definitions, we can define the following four subspaces:

1. Σco ∶= R(Q) ∩ V2 – Set of states that are controllable and observable

2. Σcō ∶= R(Q)∩N(O) – Set of states that are controllable and unobservable

3. Σc̄o ∶= V1 ∩ V2 – Set of states that are uncontrollable and observable

4. Σc̄ō ∶= V1 ∩N(O) – Set of states that are uncontrollable and unobservable

Notice that we can represent the controllable and uncontrollable subspaces as

R(Q) = Σco ⊕Σcō and V1 = Σc̄o ⊕Σc̄ō.

Similarly, we can represent the unobservable and observable subspaces as

N(O) = Σcō ⊕Σc̄ō and V2 = Σco ⊕Σc̄o.

Recall that we chose V1 and V2 such that R(Q)⊕V1 = Rn and N(O)⊕V2 = Rn.
Therefore, the entire n-dimensional Euclidean space can also be expressed as

Rn = Σco ⊕Σcō ⊕Σc̄o ⊕Σc̄ō.

If we define Tco as the matrix representation of the subspace Σco, Tcō as the
matrix representation of the subspace Σcō, Tc̄o as the matrix representation of
the subspace Σc̄o, and Tc̄ō as the matrix representation of the subspace Σc̄ō,
then we can define the invertible matrix T −1 ∈ Rn×n such that

T −1 = [Tco Tcō Tc̄o Tc̄ō] .

Using this transformation matrix, we can define a new set of matrices:

Â = TAT −1, B̂ = TB, Ĉ = CT −1, D̂ =D.

The transformed system defined by the matrices Â, B̂, Ĉ, and D̂ has the form:

Â =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, B̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B1

B2

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ĉ = [C1 0 C3 0] , D̂ =D.
This is the Kalman decomposition of the given continuous LTI system.
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Chapter 8

Controllability/Observability:
Discrete LTV Systems

8.1 Controllability of Discrete LTV Systems
Consider the discrete linear time-varying (LTV) system described by

⎧⎪⎪⎨⎪⎪⎩

xk+1 =Akxk +Bkuk
yk = Ckxk +Dkuk

,

where xk ∈ Rn, uk ∈ Rni , yk ∈ Rno , Ak ∈ Rn×n, Bk ∈ Rn×ni , Ck ∈ Rno×n,
and Dk ∈ Rno×ni . We will determine the conditions under which this system is
(completely) controllable on a discrete time interval.

8.1.1 Controllability Condition
For discrete time systems, we are interested in whether the system is controllable
on a finite time interval [0,N]. We want to know whether there exists a set of
N inputs, u0,u1,⋯,uN−1 such that system can reach any state xN from an
arbitrary initial state x0. At discrete time N , the state of the system is

xN =
N−1

∏
i=0

Aix0 +
N−1

∑
i=0

N−1

∏
j=i+1

AjBiui.

We can rewrite the sum of products using the n ×Nni matrix defined as

QN ∶= [BN−1 AN−1BN−2 AN−1AN−2BN−3 ... AN−1⋯A0B0] .

With this definition, we can express the state of the system at time N as

xN =
N−1

∏
i=0

Aix0 +QN

⎡⎢⎢⎢⎢⎢⎢⎢⎣

uN−1
uN−2
⋮
u0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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In order for this system to be controllable, the matrix QN must be able to
map the sequence of inputs to any vector in the state space, Rn. Therefore, the
system is controllable if and only if the rank of this matrix is equal to n.

8.1.2 Controllable Subspaces
In the previous section, we showed that for a discrete LTV system with initial
state x0 at discrete time 0, we can express the state of the system at time N as

xN =
N−1

∏
i=0

Aix0 +QN

⎡⎢⎢⎢⎢⎢⎢⎢⎣

uN−1
uN−2
⋮
u0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, where

QN ∶= [BN−1 AN−1BN−2 AN−1AN−2BN−3 ... AN−1⋯A0B0] .
This tells us that the set of states reachable from the initial point x0 is

N−1

∏
i=0

Aix0 +R(QN).

Furthermore, a state xN is reachable at discrete time N if and only if

(xN −
N−1

∏
i=0

Aix0) ∈ R(QN).

Recall that the system is controllable if and only if the range of QN is the entire
state space, Rn. If this is the case, every state xN is reachable in N time steps.

8.1.3 Computing the Optimal Control
Suppose we want to find the best input sequence that allows us to move the
state of our system from the state x0 at discrete time 0 to the state xN at
discrete time N . As shown in the previous section, if x1 is in the controllable
subspace, then there exists a solution u ∈ U to the linear equation for xN .

We showed that if the system is controllable on the time interval [0,N], then
the matrix QN has full row rank and R(QN) =X = Rn. This means that if the
system is controllable, then xN is always in the controllable subspace, so there
is always a solution to the linear equation. From linear matrix equations, the
minimum norm solution is given by

u =QT
N(QNQT

N)−1 (xN −
N−1

∏
i=0

Aix0) .

If the system is not controllable on the time onterval [O,N], then the map
QN does not have full row rank and R(QN) ⊂ X = Rn. If xN is still in the
controllable subspace, then the minimum norm solution is now given by

u =QT
N(QNQT

N)† (xN −
N−1

∏
i=0

Aix0) .
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If xN is not in the controllable subspace, then there is no input u ∈ U that
can steer the system from the initial state x0 to xN . Instead, we can choose a
control that steers the system from x0 to a state x̂N , which is the closest state
to xN within the controllable subspace. Now the minimum norm solution is

û =QT
N(QNQT

N)† (xN −
N−1

∏
i=0

Aix0) .

8.2 Obseravability of Discrete LTV Systems
Consider the discrete linear time-varying (LTV) system described by

⎧⎪⎪⎨⎪⎪⎩

xk+1 =Akxk +Bkuk
yk = Ckxk +Dkuk

,

where xk ∈ Rn, uk ∈ Rni , yk ∈ Rno , Ak ∈ Rn×n, Bk ∈ Rn×ni , Ck ∈ Rno×n,
and Dk ∈ Rno×ni . We will determine the conditions under which this system is
(completely) observable on a discrete time interval.

8.2.1 Observability Condition
For discrete time systems, we are interested in whether the system is observable
on a finite time interval [0,N −1]. We want to know whether the initial state of
the system can be uniquely determined by observing its inputs (u0,u1,⋯,uN−1)
and outputs (y0,y1,⋯,yN−1) over time. Recall that we can express the output
of the system at time step k as

yk = Ck
k−1

∏
i=0

Aix0 +
k−1

∑
i=0

Ck
k−1

∏
j=i+1

AjBiui +Dkuk.

We can then express all of the outputs on the time interval [0,N − 1] as
⎡⎢⎢⎢⎢⎢⎢⎢⎣

y0
y1
⋮

yN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=ONx0 +FN

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u0

u1

⋮
uN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, where

ON ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C0

C1A0

⋮
CN−1A0⋯AN−2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and

FN ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D0 0
C1B0 D1

⋮ ⋮ ⋱
CN−1A0⋯AN−2B0 CN−2A1⋯AN−2B1 ⋯ DN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

In order to uniquely determine the initial state, x0, from the known inputs
and outputs, the null space of ON must be trivial. Therefore, the system is
observable if and only if the rank of ON is equal to n.
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8.2.2 Observable Subspaces
In the previous section, we showed that for a discrete LTV system with initial
condition x0, we can express all the outputs on the time interval [0,N − 1] as

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y0
y1
⋮

yN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=ONx0 +FN

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u0

u1

⋮
uN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

If (x0 − x̄0) ∈ N (ON), then ONx0 = ON x̄0, so the initial conditions x0 and
x̄0 are not distinguishable for a set of inputs u0,u1,⋯,uN−1 and set of out-
puts y0,y1,⋯,yN−1. Furthermore, if x0 ∈ N(ON), then the initial condition
is not distinguishable from the zero vector 0n and thus cannot be uniquely de-
termined. For this reason, this space is considered the unobservable subspace.
The observable subspace is then Rn ∖N(ON).

8.2.3 Determining the Initial Condition
Suppose we want to determine the initial state of our system after observing a
series of outputs resulting from known inputs. For convenience, we will define
the following vectors composed of the known inputs and observed outputs:

YN ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y0
y1
⋮

yN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and UN ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u0

u1

⋮
uN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Now we have the following linear matrix equation:

YN =ONx0 +FNUN .

A solution to this equation exists if and only if YN −FNUN ∈ R(ON). Further-
more, this solution is unique if and only if ON has full column rank. In Section
8.2.1, we said that if the system is observable, then it has full column rank (i.e.,
rank n). Therefore, if the system is observable, the initial condition can always
be uniquely determined by computing the following solution:

x0 = (OT
NON)−1OT

N(YN −FNUN).

If the system is not (completely) observable, then the matrix ON does not have
full column rank and the initial state cannot be uniquely determined. We can
define the best approximate of the initial state as the following optimal solution:

x̂0 = (OT
NON)†OT

N(YN −FNUN).

Now suppose that the output of our system is described by

YN =ONx0 +FNUN + z,
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where z is some unknown error or measurement noise. In this case, we may
find that YN −FNUN is not in the range space of ON . In this case, let ŶN =
ON x̂0+FNUN . We aim to find the solution x̂0 such that ŶN−FNUN is as close
to YN − FNUN as possible. Assuming the system is (completely) observable,
the least squares solution is given by

x̂0 = (OT
NON)−1OT

N(YN −FNUN).

If the system is not (completely) observable, then the matrix ON does not have
full column rank and the initial condition cannot be uniquely determined. The
"best" solution in this case is given by

x̂0 = (OT
NON)†OT

N(YN −FNUN).
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Chapter 9

Controllability/Observability:
Discrete LTI Systems

9.1 Controllability of Discrete LTI Systems
Consider the discrete linear time-invariant (LTI) system described by

⎧⎪⎪⎨⎪⎪⎩

xk+1 =Axk +Buk
yk = Cxk +Duk

,

where xk ∈ Rn, uk ∈ Rni , yk ∈ Rno , A ∈ Rn×n, B ∈ Rn×ni , C ∈ Rno×n, and
D ∈ Rno×ni . We will determine the conditions under which this system is (com-
pletely) controllable on a discrete time interval.

9.1.1 Controllability Condition
Again, for discrete time systems, we are interested in whether the system is
controllable on a finite time interval [0,N], meaning that there exists a set of
N inputs, u0,u1,⋯,uN−1 such that system can reach any state xN from an
arbitrary initial state x0. At discrete time N , the state of the system is

xN =ANx0 +
N−1

∑
i=0

AN−1−iBui.

We can rewrite the sum of products using the n ×Nni matrix defined as

QN ∶= [B AB ... AN−1B] .

With this definition, we can express the state of the system at time N as

xN =ANx0 +QN

⎡⎢⎢⎢⎢⎢⎢⎢⎣

uN−1
uN−2
⋮
u0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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In order for this system to be controllable, the matrix QN must be able to
map the sequence of inputs to any vector in the state space, Rn. Therefore, the
system is controllable if and only if the rank of this matrix is equal to n.

9.1.2 Controllable Subspaces
In the previous section, we showed that for a discrete LTI system with initial
state x0 at discrete time 0, we can express the state of the system at time N as

xN =ANx0 +QN

⎡⎢⎢⎢⎢⎢⎢⎢⎣

uN−1
uN−2
⋮
u0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, where

QN ∶= [B AB ... AN−1B] .
This tells us that the set of states reachable from the initial point x0 is

ANx0 +R(QN).

Furthermore, a state xN is reachable at discrete time N if and only if

(xN −ANx0) ∈ R(QN).

Recall that the system is controllable if and only if the range of QN is the entire
state space, Rn. If this is the case, every state xN is reachable in N time steps.

9.1.3 Computing the Optimal Control
Suppose we want to find the best input sequence that allows us to move the
state of our system from the state x0 at discrete time 0 to the state xN at
discrete time N . As shown in the previous section, if xN is in the controllable
subspace, there exists a solution u ∈ U to the linear equation for xN . To find the
optimal solution, we can follow the same approach discussed in Section 8.1.3.

9.2 Observability of Discrete LTI Systems
Consider the discrete linear time-invariant (LTI) system described by

⎧⎪⎪⎨⎪⎪⎩

xk+1 =Axk +Buk
yk = Cxk +Duk

,

where xk ∈ Rn, uk ∈ Rni , yk ∈ Rno , A ∈ Rn×n, B ∈ Rn×ni , C ∈ Rno×n, and
D ∈ Rno×ni . We will determine the conditions under which this system is (com-
pletely) observable on a discrete time interval.
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9.2.1 Observability Condition
Again, for discrete time systems, we are interested in whether the system is
observable on a finite time interval [0,N − 1], meaning that the initial state of
the system can be uniquely determined by observing its inputs (u0,u1,⋯,uN−1)
and outputs (y0,y1,⋯,yN−1) over time. For the time-invariant case, recall that
we can express the output of the system at time step k as

yk = CAkx0 +
k−1

∑
i=0

CAk−1−iBui +Duk.

We can then express all of the outputs on the time interval [0,N − 1] as

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y0
y1
⋮

yN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C
CA
⋮

CAN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

x0 +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D 0
CB D
⋮ ⋮ ⋱

CAN−2B CAN−3B ⋯ D

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

uN−1
uN−2
⋮
u0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Now let ON ∈ RNno×n be the first matrix in the equation above defined as

ON ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C
CA
⋮

CAN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

In order to uniquely determine the initial state, x0, from the known inputs
and outputs, the null space of ON must be trivial. Therefore, the system is
observable if and only if the rank of ON is equal to n.

9.2.2 Observable Subspaces
The unobservable and observable subspaces for a discrete LTI system can be
found in the same way as in the time-varying case (Section 8.2.2), but the ON
matrix that should be used is the one defined in the previous section.

9.2.3 Determining the Initial Condition
Suppose we want to determine the initial state of our system after observing a
series of outputs resulting from known inputs. To do so, we can follow the same
approach discussed for discrete LTV systems in Section 8.2.3.
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Chapter 10

State Feedback & Observers

10.1 Full State Feedback
It is common to use state feedback to design a controller for a linear system
that can drive the system to some desired state or set of states. State feedback
involves the use of the state vector to compute the control action. We refer to
controllers that use state feedback as closed-loop controllers and those that do
not receive feedback about the state as open-loop controllers.

Full state feedback (FSF), or pole placement, is a method employed to
place the closed-loop poles of the system in pre-determined locations in the
complex plane. Placing poles is desirable because the location of the poles cor-
responds directly to the eigenvalues of the system, which determine the char-
acteristics of the response of the system. The system must be controllable in
order to implement this method, which we will discuss how to do for both single-
input single-output (SISO) systems andmultiple-input multiple-output
(MIMO) systems. While this method cannot be implemented for systems that
are not controllable, we will also discuss pole placement for stabilizable systems.

10.1.1 Feedback for Controllable SISO Systems
Consider a continuous linear time-invariant (LTI) system described by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) =Ax(t) + bu(t)
y(t) = cTx(t) + du(t)
x(t0) = x0

,

where x(t) ∈ Rn, u(t) ∈ R, and y(t) ∈ R. Assume that A ∈ Rn×n, b ∈ Rn, c ∈ Rn,
and d ∈ R. To apply linear state feedback, we use an input function of the form

u(t) = −fTx(t) + r(t)
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where f ∈ Rn is a feedback vector and r(t) ∈ R is a reference signal. Under this
control, the dynamics of the system are described by the differential equation:

ẋ(t) =Ax(t) + b(−fTx(t) + r(t))
= (A − bfT )x(t) + br(t).

Now we effectively have a new system with the dynamics matrix A − bfT . We
often refer to this matrix as the closed-loop dynamics matrix.

Theorem: If the system is controllable, there exists a feedback vector, f , such
that the eigenvalues of A − bfT can be placed anywhere in the complex plane.

Proof: Recall from Section 7.3.1 that a continuous LTI SISO system is control-
lable if and only if there exists an invertible matrix T ∈ Rn×n such that

Ã = TAT −1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1
−an −an−1 −an−2 ⋯ −a1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and b̃ = Tb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
⋮
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where a1, a2,⋯, an are the coefficients in the denominator of the transfer function
for the given system. Let x̃(t) = Tx(t) be the system governed by the dynamics

˙̃x(t) = Ãx̃(t) + b̃ũ(t).

Now consider the following linear state feedback for this new system:

ũ(t) = −f̃T x̃(t) + r(t),

where f̃T = fTT −1 is a feedback matrix whose ith element is f̃i. Under this
control law, the dynamics of our new system are governed by

˙̃x(t) = (Ã − b̃f̃T )x̃(t) + b̃r(t).

The closed-loop dynamics matrix for this system can then be expressed as

Ã − b̃f̃T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

−an − f̃1 −an−1 − f̃2 −an−2 − f̃3 ⋯ −a1 − f̃n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now we can see that the characteristic polynomial of the matrix Ã−b̃f̃T has the
coefficients −ai − f̃n+1−i for i = 1,⋯, n. Because the elements of f̃ are arbitrarily
chosen real numbers, the coefficients of the closed-loop characteristic polynomial
can be given any desired values, which means that the closed-loop poles can be
assigned to arbitrary locations in the complex plane.
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The closed-loop dynamics matrix for transformed system is related to the closed-
loop dynamics matrix for the original matrix in the following way:

Ã − b̃f̃T = T (AT −1 − bfT )T −1.

Because these matrices are similar, they have the same characteristic polyno-
mial. Therefore, if the original system is controllable, we can arbitrarily select
the poles of the both the transformed and the original system.

Designing the Feedback Vector: Suppose we want to choose the feedback
vector, f , such that the eigenvalues of the closed-loop dynamics matrix,A−bfT ,
are λ1,⋯, λn, where λi ∈ C−−. Note that we generally choose the eigenvalues
such that the closed-loop system is stable. We can design f as follows:

1. Compute the actual closed loop characteristic polynomial:

χA−bfT (s) = det(sIn − (A − bfT ))
= sn + αn−1s

n−1 +⋯ + α1s + α0

2. Determine the desired closed loop characteristic polynomial:

Π(s) = (s − λ1)(s − λ2)⋯(s − λn)
= sn + βn−1s

n−1 +⋯ + β1s + β0

3. Equate the coefficients of the actual and desired characteristic polynomials
and solve for the elements of f :

α0 = β0, α1 = β1,⋯, αn−1 = βn−1

10.1.2 Feedback for Controllable MIMO Systems
Consider a continuous linear time-invariant (LTI) system described by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) =Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)
x(t0) = x0

,

where x(t) ∈ Rn, u(t) ∈ Rni , and y(t) ∈ Rno . Assume that A ∈ Rn×n, B ∈ Rn×ni ,
C ∈ Rno×n, and D ∈ Rno×ni . Linear state feedback is now of the form

u(t) = −Fx(t) + r(t)

where F ∈ Rni×n is a feedback matrix and r(t) ∈ Rni is a reference signal. Under
this control, the dynamics of the system are described by

ẋ(t) =Ax(t) +B(−Fx(t) + r(t))
= (A −BF )x(t) +Br(t).
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Now we effectively have a new system with the dynamics matrix A−BF , which
we refer to as the closed-loop dynamics matrix. If the original system is
controllable, there exists a feedback matrix, F , such that the eigenvalues of
A −BF can be placed anywhere in the complex plane.

As with the single-input single-output (SISO) system,A−BF has n eigenvalues.
However, for the multiple-input multiple-output (MIMO) system, the feedback
matrix, F , has more than n elements, so there are likely multiple valid solutions
for F . In practice, we often choose F based on the cost of using certain inputs
over others and may choose the minimum norm solution.

10.1.3 Feedback for Stabilizable Systems
If a system is not controllable, then it must have some uncontrollable mode
(refer to Section 5.4.2). We are unable to move this mode, so we can no longer
place all of the eigenvalues of the closed-loop dynamics matrix anywhere in the
complex plane. However, if the system is stabilizable, any uncontrollable modes
are stable. While we cannot move these uncontrollable modes, we can still move
all of the controllable modes such that the closed loop system is stable.

10.1.4 Closed Loop Transfer Function
Consider the continuous LTI system described by the equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) =Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)
x(t0) = x0

,

where x(t) ∈ Rn, u(t) ∈ Rni , and y(t) ∈ Rno . Assume that A ∈ Rn×n, B ∈ Rn×ni ,
C ∈ Rno×n, and D ∈ Rno×ni . Recall that the transfer function for this system is

HOL(s) =
ŷ(s)
û(s) = C(sIn −A)−1B +D.

Suppose we implement linear state feedback of the form u(t) = −Fx(t) + r(t),
where F ∈ Rni×n is a feedback matrix and r(t) ∈ Rni is a reference signal. Now
the closed-loop system can be expressed in terms of the following equations:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) = (A −BF )x(t) +Br(t)
y(t) = (C −DF )x(t) +Dr(t)
x(t0) = x0

.

Now we can see the transfer function for this closed-loop system is given by

HCL(s) =
ŷ(s)
r̂(s) = (C −DF )(sIn − (A −BF ))−1

B +D.
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10.2 Full State Observers
Often, we cannot observe the full state of a system directly and we seek to
estimate it from the output. To do so, we can design an observer.

10.2.1 Observers for Observable SISO Systems
Consider a continuous LTI SISO system described by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) =Ax(t) + bu(t)
y(t) = cTx(t) + du(t)
x(t0) = x0

,

where x(t) ∈ Rn, u(t) ∈ R, and y(t) ∈ R. Assume that A ∈ Rn×n, b ∈ Rn, c ∈ Rn,
and d ∈ R. Suppose we cannot directly access the full state, x(t), but we can
access the output, y(t). We want to find the estimated state, x̂(t), using this
output. We can design an observer with the observer gain vector t ∈ Rn such
that the estimated system can be described by the equations

⎧⎪⎪⎨⎪⎪⎩

˙̂x(t) =Ax̂(t) + bu(t) + t(y(t) − ŷ(t))
ŷ(t) = cT x̂(t) + du(t)

.

From these equations, we can see that the estimated state obeys the following:

˙̂x(t) =Ax̂(t) + bu(t) + t(y(t) − ŷ(t))

=Ax̂(t) + bu(t) + t((cTx(t) + du(t)) − (cT x̂(t) + du(t)))

=Ax̂(t) + bu(t) + tcTx(t) − tcT x̂(t)
= (A − tcT )x̂(t) + bu(t) + tcTx(t)

Let the error, e(t), be the difference between the estimated state and the true
state. The dynamics of the error are governed by the following equation:

ė(t) = ˙̂x(t) − ẋ(t)

= ((A − tcT )x̂(t) + bu(t) + tcTx(t)) − (Ax(t) + bu(t))

= (A − tcT )x̂(t) + (tcT −A)x(t)
= (A − tcT )(x̂(t) − x(t))
= (A − tcT )e(t)

Theorem: If the system is observable, there exists a gain vector, t, such that
the eigenvalues of A − tcT can be placed anywhere in the complex plane.

I will not include the proof of this theorem here because it is very similar to
the one given for the state feedback theorem in Section 10.1.1. If we choose the
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gain matrix such that all of the eigenvalues of A − tcT are in the open left half
plane, then the error will approach zero exponentially. This then implies that
the estimated state will approach the true state, irrespective of the input.

Designing the Gain Vector: Suppose we want to choose the observer gain
vector, t, such that the eigenvalues of the error dynamics matrix, A − tcT , are
λ1,⋯, λn, where λi ∈ C−−. We can design t in the following way:

1. Compute the actual error characteristic polynomial:

χA−tcT (s) = det(sIn − (A − tcT ))
= sn + αn−1s

n−1 +⋯ + α1s + α0

2. Determine the desired error characteristic polynomial:

Π(s) = (s − λ1)(s − λ2)⋯(s − λn)
= sn + βn−1s

n−1 +⋯ + β1s + β0

3. Equate the coefficients of the actual and desired characteristic polynomials
and solve for the elements of t:

α0 = β0, α1 = β1,⋯, αn−1 = βn−1

10.2.2 Observers for Observable MIMO Systems
Consider a continuous LTI MIMO system described by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) =Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)
x(t0) = x0

,

where x(t) ∈ Rn, u(t) ∈ Rni , and y(t) ∈ Rno . Assume that A ∈ Rn×n, B ∈ Rn×ni ,
C ∈ Rno×n, and D ∈ Rno×ni . As in the previous section, suppose we cannot
directly access the full state, and we want to find the estimated state, x̂(t),
using the output. We can design an observer with the observer gain matrix
T ∈ Rn×no such that the estimated system can be described by the equations

⎧⎪⎪⎨⎪⎪⎩

˙̂x(t) =Ax̂(t) +Bu(t) + T (y(t) − ŷ(t))
ŷ(t) = Cx̂(t) +Du(t)

.

As with the SISO system, the state estimation error is given by e(t) = x̂(t)−x(t),
and the error dynamics can be described by

ė(t) = (A − TC)e(t).

If the system is observable, there exists an observer gain matrix, T , such that
the eigenvalues of the error dynamics matrix, A−TC, can be placed anywhere
in the complex plane. As before, A−TC has n eigenvalues, but for the MIMO
system, the gain matrix has more than n elements, so it likely has multiple valid
solutions. In practice, we often choose T such that the gains are not too large.
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10.2.3 Observers for Detectable Systems
If a system is not observable, then it must have some unobservable mode (refer
to Section 5.4.3). We are unable to move this mode, so we can no longer place
all of the eigenvalues of the error dynamics matrix anywhere in the complex
plane. However, if the system is detectable, any unobservable modes are stable.
While we cannot move these unobservable modes, we can still move all of the
observable modes such that the estimated state converges to the true state.

10.2.4 Observer Transfer Function
Consider the continuous LTI system described by the equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) =Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)
x(t0) = x0

,

where x(t) ∈ Rn, u(t) ∈ Rni , and y(t) ∈ Rno . Assume that A ∈ Rn×n, B ∈ Rn×ni ,
C ∈ Rno×n, andD ∈ Rno×ni . As we showed previously, we can design an observer
with gain matrix T ∈ Rn×no such that the estimated system can be described by

⎧⎪⎪⎨⎪⎪⎩

˙̂x(t) =Ax̂(t) +Bu(t) + T (y(t) − ŷ(t))
ŷ(t) = Cx̂(t) +Du(t)

.

From these equations, we can see that the estimated state obeys the following:

˙̂x(t) =Ax̂(t) +Bu(t) + T y(t) − T ŷ(t)
=Ax̂(t) +Bu(t) + T y(t) − T (Cx̂(t) +Du(t))
=Ax̂(t) +Bu(t) + T y(t) − TCx̂(t) − TDu(t)
= (A − TC)x̂(t) + (B − TD)u(t) + T y(t)

The observer receives both the control signal, u(t), and the output of the original
system, y(t), as input. We can combine these into a single input variable:

ũ(t) ∶= [u(t)
y(t)] .

This now allows us the express the dynamics of the estimated system as

˙̂x(t) = (A − TC)x̂(t) + [(B − TD) T ] ũ(t).

With this new input, we can express the output of the observer as

ŷ(t) = Cx̂(t) + [D 0] ũ(t).

Now we can see that the transfer function for the estimated system is

H(s) = y(s)
ũ(s) = C(sIn − (A − TC))−1 [(B − TD) T ] + [D 0] .

Linear Systems | S. Pohland



CHAPTER 10. STATE FEEDBACK & OBSERVERS

10.3 Combining State Feedback and Observers
Often, we want to design a closed-loop controller using full state feedback but
do not have access to the full state. In these cases, we need to use an observer
to estimate the state. In this section, we will discuss how to combine full state
feedback design (Section 10.1) with observer design (Section 10.2). An example
of a system with an observer and state feedback is shown in Figure 10.1.

Figure 10.1: This is the complete configuration for a system with an observer
and state feedback. The plant is shown in the blue dotted lines, the observer is
shown in the green dotted lines, and the feedback matrix is at the bottom.
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10.3.1 Closed-Loop System with an Observer
Consider the continuous LTI system described by the equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) =Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)
x(t0) = x0

,

where x(t) ∈ Rn, u(t) ∈ Rni , and y(t) ∈ Rno . Assume that A ∈ Rn×n, B ∈ Rn×ni ,
C ∈ Rno×n, andD ∈ Rno×ni . Suppose we want to implement linear state feedback
but cannot access the full state directly. We can design an observer with the
gain matrix T ∈ Rn×no such that the estimated system can be described by

⎧⎪⎪⎨⎪⎪⎩

˙̂x(t) =Ax̂(t) +Bu(t) + T (y(t) − ŷ(t))
ŷ(t) = Cx̂(t) +Du(t)

.

Now we can use this estimated state to implement linear state feedback with
the input function u(t) = −F x̂(t) + r(t), where F ∈ Rni×n and r(t) ∈ Rni . The
dynamics of the closed loop system can now be described by the following:

ẋ(t) =Ax(t) +Bu(t)
=Ax(t) +B(−F x̂(t) + r(t))
=Ax(t) −BF x̂(t) +Br(t)

We can also describe the dynamics of the estimated state by the following:

˙̂x(t) =Ax̂(t) +Bu(t) + T (y(t) − ŷ(t))

=Ax̂(t) +B(−F x̂(t) + r(t)) + T ((Cx(t) +Du(t)) − (Cx̂(t) +Du(t)))

=Ax̂(t) −BF x̂(t) +Br(t) + TCx(t) − TCx̂(t)
= (A −BF + TC)x̂(t) +Br(t) + TCx(t)

Recall that we defined the error as the difference between the estimated and
true state (i.e. e(t) = x̂(t) − x(t)). The dynamics of the error are now given by

ė(t) = ˙̂x(t) − ẋ(t)

= ((A −BF + TC)x̂(t) +Br(t) + TCx(t)) − (Ax(t) −BF x̂(t) +Br(t))

= (A − TC)x̂(t) + (TC −A)x(t)
= (A − TC)(x̂(t) − x(t))
= (A − TC)e(t)

Notice that the error dynamics for this closed-loop system are exactly the same
as they were when we did not consider linear state feedback. Now we can also
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write the dynamics of the true state in terms of the state and error:

ẋ(t) =Ax(t) −BF x̂(t) +Br(t)
=Ax(t) −BF (e(t) + x(t)) +Br(t)
= (A −BF )x(t) −BF e(t) +Br(t)

The output can also be expressed in terms of the true state and error:

y(t) = Cx(t) +Du(t)
= Cx(t) +D(−F x̂(t) + r(t))
= Cx(t) −DF x̂(t) +Dr(t)
= Cx −DF (e + x) +Dr
= (C −DF )x(t) −DF e(t) +Dr(t)

Combining the dynamics of the actual state with the dynamics of the state
estimation error, we can express the dynamics of the closed loop system as

[ẋ(t)
ė(t)] = [(A −BF ) −BF

0 (A − TC)] [
x(t)
e(t)] + [B

0
] r(t)

y(t) = [(C −DF ) −DF ] [x(t)
e(t)] +Dr(t)

Notice that the dynamics matrix of this system is a block triangular matrix,
whose eigenvalues are those of the diagonal blocks: λ(A −BF ) ∪ λ(A − TC).

10.3.2 Transfer Function
Consider the LTI system given in the previous section with the full state observer
and linear state feedback implemented as described. Let’s define a new variable:

x̃(t) ∶= [x(t)
e(t)] .

To simplify our notation, let’s also define the following matrices:

Ã = [(A −BF ) −BF
0 (A − TC)] , B̃ = [B

0
] ,

C̃ = [(C −DF ) −DF ] , D̃ =D.
Now the closed loop system with observer can be described by the equations

⎧⎪⎪⎨⎪⎪⎩

˙̃x(t) = Ãx̃(t) + B̃r(t)
y(t) = C̃x̃(t) + D̃r(t)

.

We can now see that the closed loop transfer function for this system is

HCL(s) =
y(s)
r(s) = C̃(sIn − Ã)−1B̃ + D̃.
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10.3.3 Separation Principle
The separation theorem says that for a continuous LTI system, we can design
the linear state feedback control matrix, F , and the full state observer gain
matrix, T , independently. We can first design the full state observer gain matrix
to provide asymptotically-accurate state estimates. Then we can design the
linear state feedback matrix as though we can directly access the full state.

When choosing the desired poles of the closed-loop dynamics matrix, (A−BF ),
and the error dynamics matrix, (A − TC), we follow a few rules of thumb:

1. We typically design F such that the eigenvalues of A−BF are not too far
from the eigenvalues of A. If we place the eigenvalues too far in the left
half plane, we have large gains, which can lead to actuator saturation.

2. We typically design T such that the eigenvalues of A − TC are also not
too far from the eigenvalues of A. If we place the eigenvalues too far in
the left half plane, we again require large gains, which greatly amplifies
any noise and/or errors in the system.

3. We tend to design F and T such that the eigenvalues of A − TC are
around 2-3 times farther to the left than the eigenvalues of A−BF . This
is done so that the state estimation error converges to zero faster.
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Chapter 11

Linear Quadratic Regulator
(LQR)

11.1 Dynamic Programming
In the previous chapter, we discussed how to control a system using linear state
feedback (with and without the use of an observer). Another very popular
controller for both continuous and discrete LTI system is the linear quadratic
regulator (LQR), which relies on an optimization principle called dynamic
programming. The idea of dynamic programming is to simplify a complicated
problem by breaking it down into simpler sub-problems in a recursive manner.

Suppose we want to find the optimal control sequence over some time interval
[0,N]. Bellman’s principle of optimality is a dynamic programming princi-
ple that says if we have found the optimal sequence on the interval [0,N], then
the resulting sequence is also optimal on all subintervals of the form [t,N], where
t > 0. This means that the optimal control sequence over the entire time horizon
remains optimal at intermediate points in time. In the following sections, I’ll
show how this principle is used to design the linear quadratic regulator.

11.2 Discrete Time LQR
The linear quadratic regulator (LQR) is applicable to both continuous and dis-
crete LTI systems with some variations. I will begin by discussing how it is
applied to discrete time systems using Bellman’s principle of optimality.

11.2.1 Vanilla LQR Problem
I will begin with the "vanilla" LQR problem and then discuss some variations.
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LQR Optimization Problem

Consider a discrete linear time-invariant (LTI) system described by

⎧⎪⎪⎨⎪⎪⎩

xk+1 =Axk +Buk
x0 = xinit

,

where xk ∈ Rn, uk ∈ Rni ,A ∈ Rn×n,B ∈ Rn×ni , and k ∈ [0,N]. To design a linear
quadratic regulator, we want to find the control sequence U = {u0,u1,⋯,uN−1}
that minimizes the following quadratic cost function:

J(U,x0) ∶=
N−1

∑
τ=0

(xTτQxτ +uTτRuτ) +xTNQfxN ,

where Q,Qf ∈ Rn×n are some positive semidefinite matrices and R ∈ Rni×ni is a
positive definite matrix. In this cost function, xTτQxτ is the cost for deviating
from the desired state (zero) at time τ , uTτRuτ is the cost for applying control at
time τ , and xTNQfxN is the cost for deviating from the desired terminal state.
The cost xTτQxτ +uTτRuτ is called the running cost, and the cost xTNQfxN
is called the final cost. To find the control that minimizes this cost function,
while obeying our dynamics, we set up the following optimization problem:

Û = arg min
U

J(U,x0)

s.t. xk+1 =Axk +Buk
x0 = xinit

Bellman’s Principle

We can solve this problem using a dynamic programming approach. Recall Bell-
man’s principle of optimality says that a sequence which is optimal on an entire
time interval, [0,N], is also optimal on all subintervals, [k,N] for k > 0. Let’s
then define the control sequence on this interval as Uk = {uk, uk+1,⋯, uN−1}.
We can then express the quadratic cost on just this subinterval as

J(Uk,xk) ∶=
N−1

∑
τ=k

(xTτQxτ +uTτRuτ) +xTNQfxN .

We will define the minimum "cost-to-go" from a given state, xk, as

J∗k (xk) =min
Uk

J(Uk,xk)

s.t. xk+1 =Axk +Buk
x0 = xinit

From Bellman’s principle of optimality, we can recognize that the minimum
cost-to-go from a given state, xk, is equal to the cost incurred at time k (the
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stage cost) plus the minimum cost-to-go from the next state, xk+1. This then
allows us to express the minimum cost-to-go from state xk as

J∗k (xk) =min
uk

(xTkQxk +uTkRuk + Ĵk+1(xk+1))

s.t. xk+1 =Axk +Buk
x0 = xinit

Plugging the constraint into our objective, we can express the minimum cost as

J∗k (xk) = min
uk

{xTkQxk +uTkRuk + Ĵk+1(Axk +Buk)}.

Optimal Cost & Control

Now let’s claim that the minimum cost-to-go and optimal control at time k are

J∗k (xk) = xTkPkxk and ûk = −Kkxk,

where the matrices Pk ∈ Rn×n and Kk ∈ Rni×n are defined such that

Pk =
⎧⎪⎪⎨⎪⎪⎩

Qf for k = N
Q +KT

kRKk + (A −BKk)TPk+1(A −BKk) for k = 0,1,⋯,N − 1

Kk = (R +BTPk+1B)−1BTPk+1A for k = 0,1,⋯,N − 1

Proof of Optimality

We can prove that this claim is true by induction. For k = N , the minimum cost-
to-go is simply the cost incurred at k = N , which is the final cost, xTNQfxN .
Therefore, at k = N , the minimum cost-to-go aligns with the claim that the
optimal cost is J∗k (xk) = xTkPkxk with Pk =Qf for k = N .

We just showed that our claim is true for the initial condition k = N . Now we
want to show that if it is true for k = t, then it is also true for k = t − 1. Recall
that we previously defined the minimum cost-to-go such that

J∗t−1(xt−1) = min
ut−1

{xTt−1Qxt−1 +uTt−1Rut−1 + J∗t (Axt−1 +But−1)}.

If we assume our claim holds for k = t, the minimum cost-to-go at this time is

J∗t (xt) = xTt Ptxt.

Using this assumption in our expression for the cost-to-go as time k = t − 1,

J∗t−1(xt−1) = min
ut−1

{xTt−1Qxt−1+uTt−1Rut−1+(Axt−1+But−1)TPt(Axt−1+But−1)}.

We can expand and simplify this expression for the optimal cost-to-go as

J∗t−1(xt−1) = min
ut−1

{xTt−1(Q+ATPtA)xt−1+uTt−1(R+BTPtB)ut−1+2uTt−1B
TPtAxt−1}.
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Because this objective function is quadratic in ut−1, our optimization problem
is convex, so the optimal solution, ût−1, satisfies the following equality:

∇ut−1J
∗

t−1(xt−1)∣ut−1=ût−1 = 0.

Taking the gradient of the minimum cost-to-go with respect to ut−1, we get

∇ut−1J
∗

t−1(xt−1) = 2(R +BTPtB)ut−1 + 2BTPtAxt−1.

Plugging in ût−1 for ut−1 and setting this equation equal to zero, we find

ût−1 = −(R +BTPtB)−1
BTPtAxt−1 = −Kt−1xt−1.

Now to find the minimum cost-to-go for k = t−1, we can substitute this optimal
cost into our previous expression for J∗t−1(xt−1), which gives us

J∗t−1(xt−1) = xTt−1Qxt−1 + ûTt−1Rût−1 + (Axt−1 +Bût−1)TPt(Axt−1 +Bût−1)
= xTt−1Qxt−1 +xTt−1KT

t−1RKt−1xt−1

+ (Axt−1 −BKt−1xt−1)
T
Pt(Axt−1 −BKt−1xt−1)

= xTt−1Qxt−1 +xTt−1KT
t−1RKt−1xt−1

+xTt−1(A −BKt−1)
T
Pt(A −BKt−1)xt−1

= xTt−1(Q +KT
t−1RKt−1 + (A −BKt−1)

T
Pt(A −BKt−1))xt−1

= xTt−1Pt−1xt−1

Therefore, we have proven by induction that the expressions for J∗k (xk) and ûk
given previously without proof are truly the minimum cost-to-go and optimal
control. Notice that the optimal control is a linear function of the state, which
is called linear state feedback. This is a rather nice and simple solution.

11.2.2 Variation 1: Output Cost
Now we will discuss some variations of the "vanilla" LQR problem. We will
start with a simple variation, in which we aim to minimize the output of the
system in place of the state. Consider a discrete LTI system described by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xk+1 =Axk +Buk
yk = Cxk +Duk
x0 = xinit

,

where xk ∈ Rn, uk ∈ Rni , yk ∈ Rno , A ∈ Rn×n, B ∈ Rn×ni , C ∈ Rno×n, D ∈
Rno×ni , and k ∈ [0,N]. Previously, we wanted to find the control sequence
U = {u0,u1,⋯,uN−1} that minimized the quadratic cost function

J(U,x0) =
N−1

∑
τ=0

(xTτQxτ +uTτRuτ) +xTNQfxN .
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Now let’s suppose that we to minimize the quadratic cost function

J(U,x0) =
N−1

∑
τ=0

(yTτQyτ +uTτRuτ),

where Q ∈ Rno×no is a positive semidefinite matrix and R ∈ Rni×no is positive
definite. In this modified cost function, yTτQyτ is the cost for deviating from the
desired output (zero) at time τ and uTτRuτ is the cost for applying control at
time τ . This formulation of the cost function gives us nearly the same minimum
cost-to-go and optimal control that we found previously:

J∗k (xk) = xTkPkxk and ûk = −Kkxk,

where the matrices Pk ∈ Rn×n and Kk ∈ Rni×n are now defined such that

Pk =
⎧⎪⎪⎨⎪⎪⎩

0 for k = N
CTQC +KT

kRKk + (A −BKk)TPk+1(A −BKk) for k = 0,1,⋯,N − 1

Kk = (R +BTPk+1B)−1BTPk+1A for k = 0,1,⋯,N − 1

We can prove that this is the minimum cost-to-go and optimal cost in the same
way as we did for the previous formulation of the cost function.

11.2.3 Variation 2: Affine System
Consider a discrete affine time-invariant system described by

⎧⎪⎪⎨⎪⎪⎩

xk+1 =Axk +Buk + c
x0 = xinit

,

where xk ∈ Rn, uk ∈ Rni , A ∈ Rn×n, B ∈ Rn×ni , c ∈ Rn, and k ∈ [0,N]. Suppose
we want to find the control sequence U = {u0,u1,⋯,uN−1} that minimizes

J(U,x0) =
N−1

∑
τ=0

(xTτQxτ +uTτRuτ) +xTNQfxN .

To derive the optimal control policy, we can define a new state vector:

zk ∶= [xk
1
] .

This then allows us to express the affine system as a linear system:

zk+1 = Ãzk + B̃uk, where

Ã = [A c
0 1

] and B̃ = [B
0
] .
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To express the cost function in terms of this new variable, we need to pad the
cost matrices Q and Qf with zeros to make them the appropriate size:

Q̃ ∶= [Q 0
0 0

] and Q̃f ∶= [Qf 0
0 0

] .

Now our cost function can be expressed in terms of this new state as

J(U,z0) =
N−1

∑
τ=0

(zTτ Q̃zτ +uTτRuτ) + zTNQ̃fzN .

This formulation of the cost function gives us nearly the same minimum cost-
to-go and optimal control as we found for the original linear system:

J∗k (zk) = zTkPkzk and ûk = −Kkzk,

where the matrices Pk ∈ Rn×n and Kk ∈ Rni×n are now defined such that

Pk =
⎧⎪⎪⎨⎪⎪⎩

Q̃f for k = N
Q̃ +KT

kRKk + (Ã − B̃Kk)TPk+1(Ã − B̃Kk) for k = 0,1,⋯,N − 1

Kk = (R + B̃TPk+1B̃)−1B̃TPk+1Ã for k = 0,1,⋯,N − 1

We can prove that this is the minimum cost-to-go and optimal cost in the same
way as we did for the original formulation of the cost function.

11.2.4 Variation 3: Reference Trajectory
Again, consider a discrete linear time-invariant (LTI) system described by

⎧⎪⎪⎨⎪⎪⎩

xk+1 =Axk +Buk
x0 = xinit

,

where xk ∈ Rn, uk ∈ Rni , A ∈ Rn×n, B ∈ Rn×ni , and k ∈ [0,N]. Now suppose we
want our system to follow a reference trajectory (xrefi ,urefi ) for i = 0,1,⋯,N as
closely as possible. We can derive a control policy that minimizes the deviation
of the system trajectory from the reference trajectory by finding the control
sequence U = {u0,u1,⋯,uN−1} that minimizes the quadratic cost function

J(U,x0) =
N−1

∑
τ=0

((xτ −xrefτ )TQ(xτ −xrefτ ) + (uτ −urefτ )TR(uτ −urefτ ))

+ (xN −xrefN )TQf(xN −xrefN ).
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Case 1: Reference Trajectory Obeys Dynamics

Let’s first consider the case where the reference trajectory obeys the dynamics
of our system (i.e. xrefk+1 = Axrefk +Burefk ). We can define the new state and
input variables zk = xk − xrefk and vk = uk − urefk . Now the dynamics of this
new system can be described by the following equation:

zk+1 = xk+1 −xrefk+1 = (Axk +Buk) − (Axrefk +Burefk )
=A(xk −xrefk ) +B(uk −urefk ) =Azk +Bvk

Our cost function can now be expressed in terms of these new variables as

J(U, z0) =
N−1

∑
τ=0

(zTτQzτ + vTτRvτ) + zTNQfzN .

This formulation of the cost function gives us nearly the same minimum cost-
to-go and optimal control as we found previously:

J∗k (zk) = zTkPkzk and v̂k = −Kkzk,

where the matrices Pk ∈ Rn×n and Kk ∈ Rni×n are again defined such that

Pk =
⎧⎪⎪⎨⎪⎪⎩

Qf for k = N
Q +KT

kRKk + (A −BKk)TPk+1(A −BKk) for k = 0,1,⋯,N − 1

Kk = (R +BTPk+1B)−1BTPk+1A for k = 0,1,⋯,N − 1

We can prove that this is the minimum cost-to-go and optimal cost in the same
way as we did for the original formulation of the cost function. In terms of our
original variables, the optimal control is given by

ûk = −Kk(xk −xrefk ) +urefk .

Case 2: Reference Trajectory oes Not Obey Dynamics

Now let’s consider the case where the reference trajectory does not obey the
dynamics of our system (i.e. xrefk+1 ≠Ax

ref
k +Burefk ). In this case, the reference

trajectory must obey some time-varying affine model with ck ∈ Rn:

xrefk+1 =Ax
ref
k +Burefk + ck.

As we did previously, we can define new state and input variables zk = xk−xrefk
and vk = uk −urefk . The dynamics of this system can be described by

zk+1 = xk+1 −xrefk+1 = (Axk +Buk) − (Axrefk +Burefk + ck)
=A(xk −xrefk ) +B(uk −urefk ) − ck =Azk +Bvk − ck
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Notice that this system is described by an affine time-varying model. To derive
the optimal control policy, we can define another new state vector

wk ∶= [zk
1
] .

This then allows us to express the affine time-varying system as a linear one:

wk+1 = Ãkwk + B̃vk, where

Ãk = [A −ck
0 1

] and B̃ = [B
0
] .

To express the cost function in terms of this new variable, we need to pad the
cost matrices Q and Qf with zeros to make them the appropriate size:

Q̃ ∶= [Q 0
0 0

] and Q̃f ∶= [Qf 0
0 0

] .

Now our cost function can be expressed in terms of this new state as

J(U,z0) =
N−1

∑
τ=0

(wT
τ Q̃wτ + vTτRvτ) +wT

NQ̃fwN .

This formulation of the cost function gives us nearly the same minimum cost-
to-go and optimal control as we found previously:

J∗k (wk) =wT
kPkwk and v̂k = −Kkwk,

where the matrices Pk ∈ Rn×n and Kk ∈ Rni×n are now defined such that

Pk =
⎧⎪⎪⎨⎪⎪⎩

Q̃f for k = N
Q̃ +KT

kRKk + (Ãk − B̃Kk)TPk+1(Ãk − B̃Kk) for k = 0,1,⋯,N − 1

Kk = (R + B̃TPk+1B̃)−1B̃TPk+1Ãk for k = 0,1,⋯,N − 1

We can prove that this is the minimum cost-to-go and optimal cost in the same
way as we did for the original formulation of the cost function. In terms of our
original variables, the optimal control is given by

ûk = −Kk [xk −x
ref
k

1
] +urefk .

11.3 Continuous Time LQR
LQR is also applicable to continuous LTI systems. We will now discuss how to
set up and solve the LQR optimization problem for continuous systems.
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11.3.1 Vanilla LQR Problem
Again, I will begin with the "vanilla" LQR problem and then discuss variations.

LQR Optimization Problem

Consider a continuous linear time-invariant (LTI) system described by

⎧⎪⎪⎨⎪⎪⎩

ẋ(t) =Ax(t) +Bu(t)
x(0) = x0

,

where x(t) ∈ Rn, u(t) ∈ Rni , A ∈ Rn×n, and B ∈ Rn×ni . Suppose we want to find
the control function, u, that minimizes the quadratic cost function

J(u) = ∫
∞

0
(x(t)TQx(t) + u(t)TRu(t))dt,

where Q ∈ Rn×n is a positive semidefinite matrix and R ∈ Rni×ni is positive
definite. In this cost function, x(t)TQx(t) is the cost for deviating from the
desired state (zero) at time t and u(t)TRu(t) is the cost for applying control
at time t. To find the control that minimizes this cost function, while obeying
our dynamics, we set up the following optimization problem:

û =arg min
u

J(u)

s.t. ẋ(t) =Ax(t) +Bu(t)
x(0) = x0

Optimal Control

For this optimization problem, we claim the optimal control is given by

û(t) = −R−1BTPx(t),

where P is the positive definite solution to the Algeabraic Ricatti Equation:

PA +ATP −PBR−1BTP +Q = 0.

Proof of Optimality

To prove this is actually the optimal control, we will first use the fundamental
theorem of calculus to write the following integral derivative:

d

dt
∫

∞

0
x(t)TPx(t)dt = lim

t→∞
x(t)TPx(t) − x(0)TPx(0).

Additionally, using the Leibniz rule, we can write this integral as

d

dt
∫

∞

0
x(t)TPx(t)dt = ∫

∞

0

d

dt
x(t)TPx(t)dt.
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Using the product rule to compute the inner derivative, we now have

d

dt
∫

∞

0
x(t)TPx(t)dt = ∫

∞

0
ẋ(t)TPx(t) + x(t)TP ẋ(t)dt.

Given the condition on the dynamics of the system, this expression becomes

d

dt
∫

∞

0
x(t)TPx(t)dt = ∫

∞

0
(Ax(t)+Bu(t))TPx(t)+x(t)TP (Ax(t)+Bu(t))dt.

Expanding the expression inside the integral, we have

d

dt
∫

∞

0
x(t)TPx(t)dt = ∫

∞

0
x(t)TATPx(t) + 2u(t)TBTPx(t) + x(t)TPAx(t)dt

= ∫
∞

0
x(t)T (ATP +PA)x(t) + 2u(t)TBTPx(t)dt.

We can now take our previous expression for the cost function and essentially
add zero to it by subtracting and adding two equivalent expressions:

J(u) = ∫
∞

0
(x(t)TQx(t) + u(t)TRu(t))dt − lim

t→∞
x(t)TPx(t) + x(0)TPx(0)

∫
∞

0
x(t)T (ATP +PA)x(t) + 2u(t)TBTPx(t)dt.

We can write this expression for the cost a bit more neatly:

J(u) = ∫
∞

0
x(t)T (Q +ATP +PA)x(t) + 2u(t)TBTPx(t) + u(t)TRu(t)dt

+ x(0)TPx(0) − lim
t→∞

x(t)TPx(t).

Assuming P is the positive definite solution to the Algeabraic Ricatti Equation,
we can substitute PBR−1BTP for Q+ATP +PA in our previous expression:

J(u) = ∫
∞

0
x(t)T (PBR−1BTP )x(t) + 2u(t)TBTPx(t) + u(t)TRu(t)dt

+ x(0)TPx(0) − lim
t→∞

x(t)TPx(t).

Rearranging the expression inside the integral, we can write the cost as

J(u) = ∫
∞

0
(u(t) +R−1BTPx(t))TR(u(t) +R−1BTPx(t))dt

+ x(0)TPx(0) − lim
t→∞

x(t)TPx(t).

If the system is stable under the optimal control, then the state approaches the
zero vector as time goes to infinity. Under this condition, the cost is simply

J(u) = x(0)TPx(0) + ∫
∞

0
(u(t) +R−1BTPx(t))TR(u(t) +R−1BTPx(t))dt.
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We previously assumed that the optimal control is given by û(t) = −R−1BTPx(t).
If we plug this into our previous expression for the cost, we find

J(û) = x(0)TPx(0) + ∫
∞

0
(û(t) +R−1BTPx(t))TR(û(t) +R−1BTPx(t))dt

= x(0)TPx(0) + ∫
∞

0
0Tni
R0nidt

= x(0)TPx(0)

This is the cost incurred for the initial state, x(0), without applying any control
or considering any other states. Therefore, this must be the minimum cost.
Now we have proven that the optimal control is in fact û(t) = −R−1BTPx(t).
Notice that this control is a linear function of the state, which is called linear
state feedback. Again, LQR gives us a simple solution for the optimal control.

11.3.2 Variation 1: Output Cost
Now we will discuss some variations of the "vanilla" LQR problem. We will
start with a simple variation, in which we aim to minimize the output of the
system in place of the state. Consider a discrete LTI system described by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) =Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)
x(0) = x0

,

where x(t) ∈ Rn, u(t) ∈ Rni , and y(t) ∈ Rno . Assume that A ∈ Rn×n, B ∈ Rn×ni ,
C ∈ Rno×n, and D ∈ Rno×ni . Now suppose we want to find the control function
u that minimizes the quadratic cost function in terms of the output:

J(u) = ∫
∞

0
(y(t)TQy(t) + uT (t)Ru(t))dt,

where Q ∈ Rno×no is a positive semidefinite matrix and R ∈ Rni×ni is positive
definite. In this cost function, yT (t)Qy(t) is the cost for deviating from the
desired output (zero) at time t and uT (t)Ru(t) is the cost for applying control
at time t. To find the control that minimizes this cost function, while obeying
our dynamics, we set up the following optimization problem:

û =arg min
u

J(u)

s.t. ẋ(t) =Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

The solution to this optimization problem is very similar to the one given for
the cost function that penalized state deviations, instead of output deviations.
For this optimization problem, the optimal control is again given by

û(t) = −R−1BTPx(t),
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but now P is the positive definite solution to the Algeabraic Ricatti Equation:

PA +ATP −PBR−1BTP +CTQC = 0.

We can prove that this is the optimal control in the same way as we did for the
previous formulation of the cost function.

11.3.3 Variation 2: Reference Trajectory
Again, consider a continuous LTI system described by the differential equation

⎧⎪⎪⎨⎪⎪⎩

ẋ(t) =Ax(t) +Bu(t)
x(0) = x0

,

where x(t) ∈ Rn, u(t) ∈ Rni , A ∈ Rn×n, and B ∈ Rn×ni . Suppose we want our
system to follow a reference trajectory (xref(t), uref(t)) for t ≥ 0 as closely as
possible. We can derive a control policy that minimizes the deviation of the
system trajectory from the reference trajectory by finding the control function,
u, that minimizes the following quadratic cost function:

J(u) = ∫
∞

0
(x(t)−xref(t))TQ(x(t)−xref(t))+(u(t)−uref(t))TR(u(t)−uref(t))dt.

We can define the new state and input variables such that z(t) = x(t) − xref(t)
and v(t) = u(t) − uref(t). Now our quadratic cost function can be expressed as

J(u) = ∫
∞

0
(z(t)TQz(t) + v(t)TRv(t))dt.

This formulation of the cost gives us nearly the same optimal control as before:

v̂(t) = −R−1BTP z(t),

where P is the positive definite solution to the Algeabraic Ricatti Equation:

PA +ATP −PBR−1BTP +Q = 0.

We can prove that this is the optimal cost in the same way as we did for
the original formulation of the cost function. In terms of our original system
variables and reference signals, the optimal control is given by

û(t) = −R−1BTP (x(t) − xref(t)) + uref(t).

11.4 Choosing Q and R Matrices
So far, we discussed how to solve the LQR optimization problem for both the
standard discrete and continuous LTI cases, along with a few variations. We’ll
end by discussing how to choose the parameters of this optimization problem.
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We typically choose the cost matrices, Q and R, to be diagonal matrices, so
that the ith diagonal element of Q represents the cost of deviating from the ith
element of the state (or output), and the ith diagonal element ofR represents the
cost for using the ith element of the input. If the elements of R are larger than
those of Q, then we place a greater cost on using input than on state/output
deviations, and control is said to be expensive. In this case, we will see a slower
response and more overshoot before the system reaches the desired state. If the
elements of R are smaller than Q, then we place a greater cost on state/output
deviations than on using input, and control is said to be cheap. In this case, we
will see a faster response and less overshoot before the system settles.
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